Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chem Rev. 2006;106:3468–96.
Article
CAS
PubMed
Google Scholar
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and diversity of assembly-line polyketide synthases. Chem Rev. 2019;119:12524–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herbst DA, Townsend CA, Maier T. The architectures of iterative type I PKS and FAS. Nat Prod Rep. 2018;35:1046–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christianson DW. Structural and chemical biology of terpenoid cyclases. Chem Rev. 2017;117:11570–648.
Article
CAS
PubMed
PubMed Central
Google Scholar
Firn RD, Jones CG. Natural products—a simple model to explain chemical diversity. Nat Prod Rep. 2003;20:382–91.
Article
CAS
PubMed
Google Scholar
Masters K-S, Bräse S. Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis. Chem Rev. 2012;112:3717–76.
Article
CAS
PubMed
Google Scholar
Wezeman T, Bräse S, Masters K-S. Xanthone dimers: a compound family which is both common and privileged. Nat Prod Rep. 2015;32:6–28.
Article
CAS
PubMed
Google Scholar
Sanchez JF, Entwistle R, Hung J-H, Yaegashi J, Jain S, Chiang Y-M, Wang CCC, Oakley BR. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J Am Chem Soc. 2011;133:4010–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpson TJ. Genetic and biosynthetic studies of the fungal prenylated xanthone shamixanthone and related metabolites in Aspergillus spp. revisited. ChemBioChem. 2012;13:1680–8.
Article
CAS
PubMed
Google Scholar
Schätzle MA, Husain SM, Ferlaino S, Müller M. Tautomers of anthrahydroquinones: Enzymatic reduction and implications for chrysophanol, monodictyphenone, and related xanthone biosyntheses. J Am Chem Soc. 2012;134:14742–5.
Article
PubMed
Google Scholar
Neubauer L, Dopstadt J, Humpf H-U, Tudzynski P. Identification and characterization of the ergochrome gene cluster in the plant pathogenic fungus Claviceps purpurea. Fungal Biol Biotechnol. 2016;3:2.
Article
PubMed
PubMed Central
Google Scholar
Matsuda Y, Gotfredsen CH, Larsen TO. Genetic characterization of neosartorin biosynthesis provides insight into heterodimeric natural product generation. Org Lett. 2018;20:7197–200.
Article
CAS
PubMed
Google Scholar
Szwalbe AJ, Williams K, Song Z, de Mattos-Shipley K, Jason L, Bailey AM, Willis CL, Cox RJ, Simpson TJ. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chem Sci. 2019;10:233–8.
Article
CAS
PubMed
Google Scholar
Greco C, de Mattos-Shipley K, Andrew M, Mulholland NP, Vincent JL, Willis CL, Cox RJ, Simpson TJ. Structure revision of cryptosporioptides and determination of the genetic basis for dimeric xanthone biosynthesis in fungi. Chem Sci. 2019;10:2930–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei X, Matsuda Y. Unraveling the fungal strategy for tetrahydroxanthone biosynthesis and diversification. Org Lett. 2020;22:1919–23.
Article
CAS
PubMed
Google Scholar
Wei X, Chen X, Chen L, Yan D, Wang W-G, Matsuda Y. Heterologous biosynthesis of tetrahydroxanthone dimers: Determination of key factors for selective or divergent synthesis. J Nat Prod. 2021;5:1544–9.
Article
Google Scholar
Wen Z, Karsten K, Zia-Ullah A, Ulrich F, Gennaro P, Lorenzo DB, Sándor A, Tibor K, Joachim R, Siegfried D, Barbara S. New mono- and dimeric members of the secalonic acid family: Blennolides A–G isolated from the fungus Blennoria sp. Chem Eur J. 2008;14:4913–23.
Article
Google Scholar
Steyn PS. The isolation, structure and absolute configuration of secalonic acid D, the toxic metabolite of Penicillium oxalicum. Tetrahedron. 1970;26:51–7.
Article
CAS
PubMed
Google Scholar
Proksa B, Uhrín D, Liptaj T, Šturdíková M. Neosartorin, an ergochrome biosynthesized by Neosartorya fischeri. Phytochemistry. 1998;48:1161–4.
Article
CAS
Google Scholar
Ola ARB, Debbab A, Aly AH, Mandi A, Zerfass I, Hamacher A, Kassack MU, Brötz-Oesterhelt H, Kurtan T, Proksch P. Absolute configuration and antibiotic activity of neosartorin from the endophytic fungus Aspergillus fumigatiaffinis. Tetrahedron Lett. 2014;55:1020–3.
Article
CAS
Google Scholar
Qi F, Zhang W, Xue Y, Geng C, Huang X, Sun J, Lu X. Bienzyme-catalytic and dioxygenation-mediated anthraquinone ring opening. J Am Chem Soc. 2021;143:16326–31.
Article
CAS
PubMed
Google Scholar
Yang J, Mori T, Wei X, Matsuda Y, Abe I. Structural basis for isomerization reactions in fungal tetrahydroxanthone biosynthesis and diversification. Angew Chem Int Ed. 2021;60:19458–65.
Article
CAS
Google Scholar
Wagenaar MM, Clardy J. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod. 2001;64:1006–9.
Article
CAS
PubMed
Google Scholar
Ganapathy D, Reiner JR, Valdomir G, Senthilkumar S, Tietze LF. Enantioselective total synthesis and structure confirmation of the natural dimeric tetrahydroxanthenone dicerandrol C. Chem Eur J. 2017;23:2299–302.
Article
CAS
PubMed
Google Scholar
Wallwey C, Li S-M. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep. 2011;28:496–510.
Article
CAS
PubMed
Google Scholar
Jakubczyk D, Cheng JZ, O’Connor SE. Biosynthesis of the ergot alkaloids. Nat Prod Rep. 2014;31:1328–38.
Article
CAS
PubMed
Google Scholar
Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG. An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl Environ Microbiol. 2010;76:3898–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE. Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc. 2010;132:12835–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matuschek M, Wallwey C, Xie X, Li S-M. New insights into ergot alkaloid biosynthesis in Claviceps purpurea: An agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem. 2011;9:4328–35.
Article
CAS
PubMed
Google Scholar
Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE. A role for old yellow enzyme in ergot alkaloid biosynthesis. J Am Chem Soc. 2010;132:1776–7.
Article
CAS
PubMed
Google Scholar
Jakubczyk D, Caputi L, Hatsch A, Nielsen CAF, Diefenbacher M, Klein J, Molt A, Schröder H, Cheng JZ, Naesby M, O’Connor SE. Discovery and reconstitution of the cycloclavine biosynthetic pathway—enzymatic formation of a cyclopropyl group. Angew Chem Int Ed. 2015;54:5117–21.
Article
CAS
Google Scholar
Matuschek M, Wallwey C, Wollinsky B, Xie X, Li S-M. In vitro conversion of chanoclavine-I aldehyde to the stereoisomers festuclavine and pyroclavine controlled by the second reduction step. RSC Adv. 2012;2:3662–9.
Article
CAS
Google Scholar
Correia T, Grammel N, Ortel I, Keller U, Tudzynski P. Molecular cloning and analysis of the ergopeptine assembly system in the ergot fungus Claviceps purpurea. Chem Biol. 2003;10:1281–92.
Article
CAS
PubMed
Google Scholar
Ortel I, Keller U. Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. J Biol Chem. 2009;284:6650–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorenz N, Wilson EV, Machado C, Schardl CL, Tudzynski P. Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis. Appl Environ Microbiol. 2007;73:7185–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Havemann J, Vogel D, Loll B, Keller U. Cyclolization of D-lysergic acid alkaloid peptides. Chem Biol. 2014;21:146–55.
Article
CAS
PubMed
Google Scholar
Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P. The ergot alkaloid gene cluster in Claviceps purpurea: Extension of the cluster sequence and intra species evolution. Phytochemistry. 2005;66:1312–20.
Article
CAS
PubMed
Google Scholar
Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet. 2013;9:e1003323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grove JF. Non-macrocyclic trichothecenes. Nat Prod Rep. 1988;5:187–209.
Article
CAS
PubMed
Google Scholar
Grove JF. Macrocyclic trichothecenes. Nat Prod Rep. 1993;10:429–48.
Article
CAS
Google Scholar
Hohn TM, Vanmiddlesworth F. Purification and characterization of the sesquiterpene cyclase trichodiene synthetase from Fusarium sporotrichioides. Arch Biochem Biophys. 1986;251:756–61.
Article
CAS
PubMed
Google Scholar
Hohn TM, Beremand PD. Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene. 1989;79:131–8.
Article
CAS
PubMed
Google Scholar
Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M, Kimura M. Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun. 2007;353:412–7.
Article
CAS
PubMed
Google Scholar
Trapp SC, Hohn TM, McCormick S, Jarvis BB. Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum. Mol Gen Genet. 1998;257:421–32.
Article
CAS
PubMed
Google Scholar
Garvey GS, McCormick SP, Rayment I. Structural and Functional Characterization of the TRI101 Trichothecene 3-O-Acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: KINETIC INSIGHTS TO COMBATING FUSARIUM HEAD BLIGHT. J Biol Chem. 2008;283:1660–9.
Article
CAS
PubMed
Google Scholar
Alexander NJ, Hohn TM, McCormick SP. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl Environ Microbiol. 1998;64:221–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCormick SP, Hohn TM, Desjardins AE. Isolation and characterization of Tri3, a gene encoding 15-O-acetyltransferase from Fusarium sporotrichioides. Appl Environ Microbiol. 1996;62:353–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garvey GS, McCormick SP, Alexander NJ, Rayment I. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides. Protein Sci. 2009;18:747–61.
CAS
PubMed
PubMed Central
Google Scholar
Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE. Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol. 2002;36:224–33.
Article
CAS
PubMed
Google Scholar
Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE. A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol. 2001;32:121–33.
Article
CAS
PubMed
Google Scholar
Meek IB, Peplow AW, Charles A, Phillips TD, Beremand MN. Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol. 2003;69:1607–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN. Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl Environ Microbiol. 2003;69:5935–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCormick SP, Alexander NJ. Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl Environ Microbiol. 2002;68:2959–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ichinoe M, Kurata H, Sugiura Y, Ueno Y. Chemotaxonomy of Gibberella zeae with special reference to production of trichothecenes and zearalenone. Appl Environ Microbiol. 1983;46:1364–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE. Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol. 2004;70:2044–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee T, Han Y-K, Kim K-H, Yun S-H, Lee Y-W. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol. 2002;68:2148–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutiérrez S. Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol. 2011;77:4867–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardoza RE, McCormick SP, Lindo L, Kim H-S, Olivera ER, Nelson DR, Proctor RH, Gutiérrez S. A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Appl Microbiol Biotechnol. 2019;103:8087–103.
Article
CAS
PubMed
Google Scholar
Gyimesi J, Melera A. On the structure of crotocin an antifungal antibiotic. Tetrahedron Lett. 1967;8:1665–73.
Article
Google Scholar
Kupchan SM, Jarvis BB, Dailey RG, Bright W, Bryan RF, Shizuri Y. Tumor inhibitors. 119. Baccharin, a novel potent antileukemic trichothecene triepoxide from Baccharis megapotamica. J Am Chem Soc. 1976;98:7092–3.
Article
CAS
PubMed
Google Scholar
Breitenstein W, Tamm C. 13C-NMR.-Spectroscopy of the trichothecane derivatives verrucarol, verrucarins A and B and roridins A, D and H verrucarins and roridins, 33rd Communication [1]. Helv Chim Acta. 1975;58:1172–80.
Article
CAS
PubMed
Google Scholar
Eppley RM, Mazzola EP, Highet RJ, Bailey WJ. Structure of satratoxin H, a metabolite of Stachybotrys atra. Application of proton and carbon-13 nuclear magnetic resonance. J Org Chem. 1977;42:240–3.
Article
CAS
PubMed
Google Scholar
Zeng H, Yin G, Wei Q, Li D, Wang Y, Hu Y, Hu C, Zou Y. Unprecedented [5.5.5.6]dioxafenestrane ring construction in fungal insecticidal sesquiterpene biosynthesis. Angew Chem Int Ed. 2019;58:6569–73.
Article
CAS
Google Scholar
Wei Q, Zeng H-C, Zou Y. Divergent biosynthesis of fungal dioxafenestrane sesquiterpenes by the cooperation of distinctive Baeyer-Villiger monooxygenases and α-ketoglutarate-dependent dioxygenases. ACS Catal. 2021;11:948–57.
Article
CAS
Google Scholar
Von Daehne W, Godtfredsen WO, Rasmussen PR. Structure-activity relationships in fusidic acid-type antibiotics. Adv Appl Microbiol. 1979;25:95–146.
Article
Google Scholar
Fernandes P. Fusidic acid: A bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harb Perspect Med. 2016;6:a025437.
Article
PubMed
PubMed Central
Google Scholar
Mitsuguchi H, Seshime Y, Fujii I, Shibuya M, Ebizuka Y, Kushiro T. Biosynthesis of steroidal antibiotic fusidanes: Functional analysis of oxidosqualene cyclase and subsequent tailoring enzymes from Aspergillus fumigatus. J Am Chem Soc. 2009;131:6402–11.
Article
CAS
PubMed
Google Scholar
Lv J-M, Hu D, Gao H, Kushiro T, Awakawa T, Chen G-D, Wang C-X, Abe I, Yao X-S. Biosynthesis of helvolic acid and identification of an unusual C-4-demethylation process distinct from sterol biosynthesis. Nat Commun. 2017;8:1644.
Article
PubMed
PubMed Central
Google Scholar
Cao Z, Li S, Lv J, Gao H, Chen G, Awakawa T, Abe I, Yao X, Hu D. Biosynthesis of clinically used antibiotic fusidic acid and identification of two short-chain dehydrogenase/reductases with converse stereoselectivity. Acta Pharm Sin B. 2019;9:433–42.
Article
PubMed
Google Scholar
Cao Z-Q, Lv J-M, Liu Q, Qin S-Y, Chen G-D, Dai P, Zhong Y, Gao H, Yao X-S, Hu D. Biosynthetic study of cephalosporin P1 reveals a multifunctional P450 enzyme and a site-selective acetyltransferase. ACS Chem Biol. 2020;15:44–51.
Article
CAS
PubMed
Google Scholar
Geris R, Simpson TJ. Meroterpenoids produced by fungi. Nat Prod Rep. 2009;26:1063–94.
Article
CAS
PubMed
Google Scholar
Matsuda Y, Abe I. Biosynthesis of fungal meroterpenoids. Nat Prod Rep. 2016;33:26–53.
Article
CAS
PubMed
Google Scholar
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009–2019). Org Biomol Chem. 2021;19:1644–704.
Article
CAS
PubMed
Google Scholar
Matsuda Y, Awakawa T, Itoh T, Wakimoto T, Kushiro T, Fujii I, Ebizuka Y, Abe I. Terretonin biosynthesis requires methylation as essential step for cyclization. ChemBioChem. 2012;13:1738–41.
Article
CAS
PubMed
Google Scholar
Matsuda Y, Awakawa T, Abe I. Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron. 2013;69:8199–204.
Article
CAS
Google Scholar
Matsuda Y, Bai T, Phippen CBW, Nødvig CS, Kjærbølling I, Vesth TC, Andersen MR, Mortensen UH, Gotfredsen CH, Abe I, Larsen TO. Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nat Commun. 2018;9:2587.
Article
PubMed
PubMed Central
Google Scholar
Mitsuhashi T, Barra L, Powers Z, Kojasoy V, Cheng A, Yang F, Taniguchi Y, Kikuchi T, Fujita M, Tantillo DJ, Porco JA Jr, Abe I. Exploiting the potential of meroterpenoid cyclases to expand the chemical space of fungal meroterpenoids. Angew Chem Int Ed. 2020;59:23772–81.
Article
CAS
Google Scholar
Matsuda Y, Awakawa T, Wakimoto T, Abe I. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis. J Am Chem Soc. 2013;135:10962–5.
Article
CAS
PubMed
Google Scholar
Matsuda Y, Iwabuchi T, Fujimoto T, Awakawa T, Nakashima Y, Mori T, Zhang H, Hayashi F, Abe I. Discovery of key dioxygenases that diverged the paraherquonin and acetoxydehydroaustin pathways in Penicillium brasilianum. J Am Chem Soc. 2016;138:12671–7.
Article
CAS
PubMed
Google Scholar
Nakashima Y, Mori T, Nakamura H, Awakawa T, Hoshino S, Senda M, Senda T, Abe I. Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis. Nat Commun. 2018;9:104.
Article
PubMed
PubMed Central
Google Scholar
Matsuda Y, Wakimoto T, Mori T, Awakawa T, Abe I. Complete biosynthetic pathway of anditomin: Nature’s sophisticated synthetic route to a complex fungal meroterpenoid. J Am Chem Soc. 2014;136:15326–36.
Article
CAS
PubMed
Google Scholar
Bai T, Matsuda Y, Tao H, Mori T, Zhang Y, Abe I. Structural diversification of andiconin-derived natural products by α-ketoglutarate-dependent dioxygenases. Org Lett. 2020;22:4311–5.
Article
CAS
PubMed
Google Scholar
Araki Y, Awakawa T, Matsuzaki M, Cho R, Matsuda Y, Hoshino S, Shinohara Y, Yamamoto M, Kido Y, Inaoka DK, Nagamune K, Ito K, Abe I, Kita K. Complete biosynthetic pathways of ascofuranone and ascochlorin in Acremonium egyptiacum. Proc Natl Acad Sci USA. 2019;116:8269–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Matsuda Y, Gao H, Hu D, Yao XS, Abe I. Biosynthesis of LL-Z1272β: Discovery of a new member of NRPS-like enzymes for aryl-aldehyde formation. ChemBioChem. 2016;17:904–7.
Article
CAS
PubMed
Google Scholar
Lin T-S, Chiang Y-M, Wang CCC. Biosynthetic pathway of the reduced polyketide product citreoviridin in Aspergillus terreus var. aureus revealed by heterologous expression in Aspergillus nidulans. Org Lett. 2016;18:1366–9.
Article
CAS
PubMed
Google Scholar
Mao X-M, Zhan Z-J, Grayson MN, Tang M-C, Xu W, Li Y-Q, Yin W-B, Lin H-C, Chooi Y-H, Houk KN, Tang Y. Efficient biosynthesis of fungal polyketides containing the dioxabicyclo-octane ring system. J Am Chem Soc. 2015;137:11904–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W-G, Du L-Q, Sheng S-L, Li A, Li Y-P, Cheng G-G, Li G-P, Sun G, Hu Q, Matsuda Y. Genome mining for fungal polyketide-diterpenoid hybrids: Discovery of key terpene cyclases and multifunctional P450s for structural diversification. Org Chem Front. 2019;6:571–8.
Article
CAS
Google Scholar
Kanokmedhakul K, Kanokmedhakul S, Suwannatrai R, Soytong K, Prabpai S, Kongsaeree P. Bioactive meroterpenoids and alkaloids from the fungus Eurotium chevalieri. Tetrahedron. 2011;67:5461–8.
Article
CAS
Google Scholar
Bai T, Quan Z, Zhai R, Awakawa T, Matsuda Y, Abe I. Elucidation and heterologous reconstitution of chrodrimanin B biosynthesis. Org Lett. 2018;8:7504–8.
Article
Google Scholar
Li X, Awakawa T, Mori T, Ling M, Hu D, Wu B, Abe I. Heterodimeric non-heme iron enzymes in fungal meroterpenoid biosynthesis. J Am Chem Soc. 2021;143:21425–32.
Article
CAS
PubMed
Google Scholar
Kato H, Tsunematsu Y, Yamamoto T, Namiki T, Kishimoto S, Noguchi H, Watanabe K. New natural products isolated from Metarhizium robertsii ARSEF 23 by chemical screening and identification of the gene cluster through engineered biosynthesis in Aspergillus nidulans A1145. J Antibiot. 2016;69:561–6.
Article
CAS
Google Scholar
Tsukada K, Shinki S, Kaneko A, Murakami K, Irie K, Murai M, Miyoshi H, Dan S, Kawaji K, Hayashi H, Kodama EN, Hori A, Salim E, Kuraishi T, Hirata N, Kanda Y, Asai T. Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. Nat Commun. 2020;11:1830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei X, Matsuyama T, Sato H, Yan D, Chan PM, Miyamoto K, Uchiyama M, Matsuda Y. Molecular and computational bases for spirofuranone formation in setosusin biosynthesis. J Am Chem Soc. 2021;143:17708–15.
Article
CAS
PubMed
Google Scholar
Macías FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Dugan FM, Hill RA. Novel bioactive breviane spiroditerpenoids from Penicillium brevicompactum Dierckx. J Org Chem. 2000;65:9039–46.
Article
PubMed
Google Scholar
Reddy P, Guthridge K, Vassiliadis S, Hemsworth J, Hettiarachchige I, Spangenberg G, Rochfort S. Tremorgenic mycotoxins: structure diversity and biological activity. Toxins. 2019;11:302.
Article
CAS
PubMed Central
Google Scholar
Tang M-C, Lin H-C, Li D, Zou Y, Li J, Xu W, Cacho RA, Hillenmeyer ME, Garg NK, Tang Y. Discovery of unclustered fungal indole diterpene biosynthetic pathways through combinatorial pathway reassembly in engineered yeast. J Am Chem Soc. 2015;137:13724–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tagami K, Liu C, Minami A, Noike M, Isaka T, Fueki S, Shichijo Y, Toshima H, Gomi K, Dairi T, Oikawa H. Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae. J Am Chem Soc. 2013;135:1260–3.
Article
CAS
PubMed
Google Scholar
Saikia S, Parker E, Koulman A, Scott B. Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline. FEBS Lett. 2006;580:1625–30.
Article
CAS
PubMed
Google Scholar
Liu C, Tagami K, Minami A, Matsumoto T, Frisvad JC, Suzuki H, Ishikawa J, Gomi K, Oikawa H. Reconstitution of biosynthetic machinery for the synthesis of the highly elaborated indole diterpene penitrem. Angew Chem Int Ed. 2015;54:5748–52.
Article
CAS
Google Scholar
Nicholson MJ, Koulman A, Monahan BJ, Pritchard BL, Payne GA, Scott B. Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function. Appl Environ Microbiol. 2009;75:7469–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Minami A, Noike M, Toshima H, Oikawa H, Dairi T. Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases AtmD and PaxD. Appl Environ Microbiol. 2013;79:7298–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tagami K, Minami A, Fujii R, Liu C, Tanaka M, Gomi K, Dairi T, Oikawa H. Rapid reconstitution of biosynthetic machinery for fungal metabolites in Aspergillus oryzae: Total biosynthesis of aflatrem. ChemBioChem. 2014;15:2076–80.
Article
CAS
PubMed
Google Scholar
Nicholson MJ, Eaton CJ, Stärkel C, Tapper BA, Cox MP, Scott B. Molecular cloning and functional analysis of gene clusters for the biosynthesis of indole-diterpenes in Penicillium crustosum and P. janthinellum. Toxins. 2015;7:2701–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Minami A, Dairi T, Gomi K, Scott B, Oikawa H. Biosynthesis of shearinine: diversification of a tandem prenyl moiety of fungal indole diterpenes. Org Lett. 2016;18:5026–9.
Article
CAS
PubMed
Google Scholar
Young C, Felitti S, Shields K, Spangenberg G, Johnson R, Bryan G, Saikia S, Scott B. A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol. 2006;43:679–93.
Article
CAS
PubMed
Google Scholar
Motoyama T, Hayashi T, Hirota H, Ueki M, Osada H. Terpendole E, a kinesin Eg5 inhibitor, is a key biosynthetic intermediate of indole-diterpenes in the producing fungus Chaunopycnis alba. Chem Biol. 2012;19:1611–9.
Article
CAS
PubMed
Google Scholar
Saikia S, Takemoto D, Tapper B, Lane G, Fraser K, Scott B. Functional analysis of an indole-diterpene gene cluster for lolitrem B biosynthesis in the grass endosymbiont Epichloë festucae. FEBS Lett. 2012;586:2563–9.
Article
CAS
PubMed
Google Scholar
Jiang Y, Ozaki T, Harada M, Miyasaka T, Sato H, Miyamoto K, Kanazawa J, Liu C, Maruyama J-I, Adachi M, Nakazaki A, Nishikawa T, Uchiyama M, Minami A, Oikawa H. Biosynthesis of indole diterpene lolitrems: Radical-induced cyclization of an epoxyalcohol affording a characteristic lolitremane skeleton. Angew Chem Int Ed. 2020;59:17996–8002.
Article
CAS
Google Scholar
Xie X, Watanabe K, Wojcicki WA, Wang CC, Tang Y. Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem Biol. 2006;13:1161–9.
Article
CAS
PubMed
Google Scholar
Bonsch B, Belt V, Bartel C, Duensing N, Koziol M, Lazarus CM, Bailey AM, Simpson TJ, Cox RJ. Identification of genes encoding squalestatin S1 biosynthesis and in vitro production of new squalestatin analogues. Chem Commun. 2016;52:6777–80.
Article
CAS
Google Scholar
Lebe KE, Cox RJ. Oxidative steps during the biosynthesis of squalestatin S1. Chem Sci. 2019;10:1227–31.
Article
CAS
PubMed
Google Scholar
Mattern DJ, Valiante V, Horn F, Petzke L, Brakhage AA. Rewiring of the austinoid biosynthetic pathway in filamentous fungi. ACS Chem Biol. 2017;12:2927–33.
Article
CAS
PubMed
Google Scholar
Lin H-C, Chooi Y-H, Dhingra S, Xu W, Calvo AM, Tang Y. The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of β-trans-bergamotene. J Am Chem Soc. 2013;135:4616–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao H, Mori T, Wei X, Matsuda Y, Abe I. One polyketide synthase, two distinct products: Trans-acting enzyme-controlled product divergence in calbistrin biosynthesis. Angew Chem Int Ed. 2021;60:8851–8.
Article
CAS
Google Scholar
Wang W-G, Wang H, Du L-Q, Li M, Chen L, Yu J, Cheng G-G, Zhan M-T, Hu Q-F, Zhang L, Yao M, Matsuda Y. Molecular basis for the biosynthesis of an unusual chain-fused polyketide, gregatin A. J Am Chem Soc. 2020;142:8464–72.
Article
CAS
PubMed
Google Scholar
Walsh CT, O’Brien RV, Khosla C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed. 2013;52:7098–124.
Article
CAS
Google Scholar
Schwartz RE, Sesin DF, Joshua H, Wilson KE, Kempf AJ, Goklen KA, Kuehner D, Gailliot P, Gleason C, White R, Inamine E, Bills G, Salmon P, Zitano L. Pneumocandins from Zalerion arboricola. I. Discovery and isolation. J Antibiot. 1992;45:1853–66.
Article
CAS
Google Scholar
Chen L, Yue Q, Zhang X, Xiang M, Wang C, Li S, Che Y, Ortiz-López FJ, Bills GF, Liu X, An Z. Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis. BMC Genomics. 2013;14:339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Chen L, Yue Q, Liu X, An Z, Bills GF. Genetic manipulation of the pneumocandin biosynthetic pathway for generation of analogues and evaluation of their antifungal activity. ACS Chem Biol. 2015;10:1702–10.
Article
CAS
PubMed
Google Scholar
Houwaart S, Youssar L, Hüttel W. Pneumocandin biosynthesis: Involvement of a trans-selective proline hydroxylase. ChemBioChem. 2014;15:2365–9.
Article
CAS
PubMed
Google Scholar
Cacho RA, Jiang W, Chooi Y-H, Walsh CT, Tang Y. Identification and characterization of the echinocandin B biosynthetic gene cluster from Emericella rugulosa NRRL 11440. J Am Chem Soc. 2012;134:16781–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang W, Cacho RA, Chiou G, Garg NK, Tang Y, Walsh CT. EcdGHK are three tailoring iron oxygenases for amino acid building blocks of the echinocandin scaffold. J Am Chem Soc. 2013;135:4457–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renata H, Shimizu E, Zwick CR. Regiodivergent biocatalytic hydroxylation of L-glutamine facilitated by characterization of non-heme dioxygenases from non-ribosomal peptide biosyntheses. Tetrahedron. 2021;90:132190.
Article
CAS
PubMed
Google Scholar
Wang G, Liu Z, Lin R, Li E, Mao Z, Ling J, Yang Y, Yin W-B, Xie B. Biosynthesis of antibiotic leucinostatins in bio-control fungus Purpureocillium lilacinum and their inhibition on Phytophthora revealed by genome mining. PLoS Path. 2016;12:e1005685.
Article
Google Scholar
Sato M, Yagishita F, Mino T, Uchiyama N, Patel A, Chooi Y-H, Goda Y, Xu W, Noguchi H, Yamamoto T, Hotta K, Houk KN, Tang Y, Watanabe K. Involvement of lipocalin-like CghA in decalin-forming stereoselective intramolecular [4+2] cycloaddition. ChemBioChem. 2015;16:2294–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato M, Dander JE, Sato C, Hung Y-S, Gao S-S, Tang M-C, Hang L, Winter JM, Garg NK, Watanabe K, Tang Y. Collaborative biosynthesis of maleimide- and succinimide-containing natural products by fungal polyketide megasynthases. J Am Chem Soc. 2017;139:5317–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett. 1993;34:2355–8.
Article
CAS
Google Scholar
Jadulco R, Edrada RA, Ebel R, Berg A, Schaumann K, Wray V, Steube K, Proksch P. New communesin derivatives from the fungus Penicillium sp derived from the mediterranean sponge Axinella verrucosa. J Nat Prod. 2004;67:78–81.
Article
CAS
PubMed
Google Scholar
Hayashi H, Matsumoto H, Akiyama K. New insecticidal compounds, communesins C, D and E, from Penicillium expansum Link MK-57. Biosci Biotechnol Biochem. 2004;68:753–6.
Article
CAS
PubMed
Google Scholar
Dalsgaard PW, Blunt JW, Munro MHG, Frisvad JC, Christophersen C. Communesins G and H, new alkaloids from the psychrotolerant fungus Penicillium rivulum. J Nat Prod. 2005;68:258–61.
Article
CAS
PubMed
Google Scholar
Lin H-C, Chiou G, Chooi Y-H, McMahon TC, Xu W, Garg NK, Tang Y. Elucidation of the concise biosynthetic pathway of the communesin indole alkaloids. Angew Chem Int Ed. 2015;54:3004–7.
Article
CAS
Google Scholar
Lin H-C, McMahon TC, Patel A, Corsello M, Simon A, Xu W, Zhao M, Houk KN, Garg NK, Tang Y. P450-mediated coupling of indole fragments to forge communesin and unnatural isomers. J Am Chem Soc. 2016;138:4002–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yee DA, Kakule TB, Cheng W, Chen M, Chong CTY, Hai Y, Hang LF, Hung Y-S, Liu N, Ohashi M, Okorafor IC, Song Y, Tang M, Zhang Z, Tang Y. Genome mining of alkaloidal terpenoids from a hybrid terpene and nonribosomal peptide biosynthetic pathway. J Am Chem Soc. 2020;142:710–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen R, Buechi G, Kobbe B, Demain AL. Secalonic acids D and F are toxic metabolites of Aspergillus aculeatus. J Org Chem. 1977;42:352–3.
Article
CAS
PubMed
Google Scholar
Rheeder JP, Marasas WFO, Vismer HF. Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol. 2002;68:2101–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaleta-Rivera K, Xu C, Yu F, Butchko RAE, Proctor RH, Hidalgo-Lara ME, Raza A, Dussault PH, Du L. A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins. Biochemistry. 2006;45:2561–9.
Article
CAS
PubMed
Google Scholar
Li Y, Lou L, Cerny RL, Butchko RAE, Proctor RH, Shen Y, Du L. Tricarballylic ester formation during biosynthesis of fumonisin mycotoxins in Fusarium verticillioides. Mycology. 2013;4:179–86.
Article
Google Scholar
Szwalbe AJ, Williams K, O’Flynn DE, Bailey AM, Mulholland NP, Vincent JL, Willis CL, Cox RJ, Simpson TJ. Novel nonadride, heptadride and maleic acid metabolites from the byssochlamic acid producer Byssochlamys fulva IMI 40021 – an insight into the biosynthesis of maleidrides. Chem Commun. 2015;51:17088–91.
Article
CAS
Google Scholar
Williams K, Szwalbe AJ, Mulholland NP, Vincent JL, Bailey AM, Willis CL, Simpson TJ, Cox RJ. Heterologous production of fungal maleidrides reveals the cryptic cyclization involved in their biosynthesis. Angew Chem Int Ed. 2016;55:6784–8.
Article
CAS
Google Scholar
de Mattos-Shipley KMJ, Spencer CE, Greco C, Heard DM, O’Flynn DE, Dao TT, Song Z, Mulholland NP, Vincent JL, Simpson TJ, Cox RJ, Bailey AM, Willis CL. Uncovering biosynthetic relationships between antifungal nonadrides and octadrides. Chem Sci. 2020;11:11570–8.
Article
PubMed
PubMed Central
Google Scholar
Bai J, Yan D, Zhang T, Guo Y, Liu Y, Zou Y, Tang M, Liu B, Wu Q, Yu S, Tang Y, Hu Y. A cascade of redox reactions generates complexity in the biosynthesis of the protein phosphatase-2 inhibitor rubratoxin A. Angew Chem Int Ed. 2017;56:4782–6.
Article
CAS
Google Scholar
Schor R, Schotte C, Wibberg D, Kalinowski J, Cox RJ. Three previously unrecognised classes of biosynthetic enzymes revealed during the production of xenovulene A. Nat Commun. 2018;9:1963.
Article
PubMed
PubMed Central
Google Scholar
Zhai Y, Li Y, Zhang J, Zhang Y, Ren F, Zhang X, Liu G, Liu X, Che Y. Identification of the gene cluster for bistropolone-humulene meroterpenoid biosynthesis in Phoma sp. Fungal Genet Biol. 2019;129:7–15.
Article
CAS
PubMed
Google Scholar
Chen Q, Gao J, Jamieson C, Liu J, Ohashi M, Bai J, Yan D, Liu B, Che Y, Wang Y, Houk KN, Hu Y. Enzymatic intermolecular hetero-Diels–Alder reaction in the biosynthesis of tropolonic sesquiterpenes. J Am Chem Soc. 2019;141:14052–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Zhang W, Tang S, Wei S, Lu X. Collaborative biosynthesis of a class of bioactive azaphilones by two separate gene clusters containing four PKS/NRPSs with transcriptional crosstalk in fungi. Angew Chem Int Ed. 2020;59:4349–53.
Article
CAS
Google Scholar
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv. 2022;54:107866.
Article
PubMed
Google Scholar
Schuster M, Kahmann R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet Biol. 2019;130:43–53.
Article
CAS
PubMed
Google Scholar
Jiménez-Osés G, Osuna S, Gao X, Sawaya MR, Gilson L, Collier SJ, Huisman GW, Yeates TO, Tang Y, Houk K. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat Chem Biol. 2014;10:431–6.
Article
PubMed
PubMed Central
Google Scholar
Chen L, Li Y, Yue Q, Loksztejn A, Yokoyama K, Felix EA, Liu X, Zhang N, An Z, Bills GF. Engineering of new pneumocandin side-chain analogues from Glarea lozoyensis by mutasynthesis and evaluation of their antifungal activity. ACS Chem Biol. 2016;11:2724–33.
Article
CAS
PubMed
PubMed Central
Google Scholar