Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87:787–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M. Trichoderma in agriculture, industry and medicine: an overview. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M, editors. Trichoderma biology and applications. Boston: CAB International; 2013. p. 1–9.
Chapter
Google Scholar
Hoitink HAJ, Madden LV, Dorrance AE. Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology. 2006;96:186–9.
Article
CAS
PubMed
Google Scholar
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BP, De Coninck B. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci. 2012. doi:10.3389/fpls.2012.00108.
PubMed
PubMed Central
Google Scholar
Howell CR. The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP, editors. Trichoderma and Gliocladium, vol. 2. London: Taylor and Francis; 1998. p. 173–84.
Google Scholar
Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009;149:1579–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2:43–56.
Article
CAS
PubMed
Google Scholar
Szabo M, Csepregi K, Galber M, Fekete C. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control. 2012;63:121–8.
Article
Google Scholar
Singh PC, Nautiyal CS. A novel method to prepare concentrated conidial biomass formulation of Trichoderma harzianum for seed application. J Appl Microbiol. 2012;113:1442–50.
Article
CAS
PubMed
Google Scholar
Gillespie AT, Moorhouse ER. The use of fungi to control pests of agricultural and horticultural importance. In: Whipps JM, Lumsden RD, editors. Biotechnology of fungi for improving plant growth. London: Cambridge University Press; 1989. p. 55–84.
Google Scholar
Mendoza-Mendoza A, Steyaert J, Nieto-Jacobo MF, Holyoake A, Braithwaite M, Stewart A. Identification of growth stage molecular markers in Trichoderma sp. ‘atroviride type B’ and their potential application in monitoring fungal growth and development in soil. Microbiology. 2015;161:2110–26.
Article
CAS
PubMed
Google Scholar
Chaparro AP, Carvajal LH, Orduz S. Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agric Sci. 2011;2:301–7.
CAS
Google Scholar
Mathivanan N, Prabavathy VR, Vijayanandraj VR. The effect of fungal secondary metabolites on bacterial and fungal pathogens. In: Karlovsky P, editor. Secondary metabolites in soil ecology. Berlin: Springer-Verlag; 2008. p. 129–40.
Chapter
Google Scholar
Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma—a genomic perspective. Microbiology. 2012;158:35–45.
Article
CAS
PubMed
Google Scholar
Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 2001;125:369–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Insam H, Seewald SA. Volatile organic compounds (VOCs) in soils. Biol Fertil Soils. 2010;46:199–213.
Article
CAS
Google Scholar
Korpi A, Jarnberg J, Pasanen AL. Microbial volatile organic compounds. Crit Rev Toxicol. 2009;39:139–93.
Article
CAS
PubMed
Google Scholar
Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B. VOC: a database of microbial volatiles. Nucleic Acids Res. 2014;42:744–8.
Article
Google Scholar
Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem. 1999;33:23–88.
Article
CAS
Google Scholar
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198:16–32.
Article
CAS
PubMed
Google Scholar
Collins RP, Halim AF. Characterization of the major aroma constituent of the fungus Trichoderma viride (Pers.). J Agric Food Chem. 1972;20:437–738.
Article
CAS
Google Scholar
Parker SR, Hill RA, Cutler HG. Spectrum of activity of antifungal natural products and their analogs. In: Cutler HG, Cutler SJ, editors. Biologically active natural products: agrochemicals. Boca Raton: CRC Press; 1999. p. 175–83.
Google Scholar
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma-plant pathogens interactions. Soil Biol Biochem. 2008;40:1–10.
Article
CAS
Google Scholar
Hung R, Lee S, Bennett JW. Arabidopsis thaliana as a model system for testing the effects of Trichoderma volatile organic compounds. Fungal Ecol. 2013;6:19–26.
Article
Google Scholar
Lee S, Hung R, Yap M, Bennett JW. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol. 2015;197:723–7.
Article
CAS
PubMed
Google Scholar
Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Nat Prod Rep. 2007;24:814–42.
Article
CAS
PubMed
Google Scholar
Piechulla B, Degenhardt J. The emerging importance of microbial volatile organic compounds. Plant Cell Environ. 2014;37:811–2.
Article
CAS
PubMed
Google Scholar
Bitas V, Kim H-S, Bennett JW, Kang S. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact J. 2013;4:835–43.
Article
Google Scholar
Junker RR, Tholl D. Volatile organic compound mediated interactions at the plant–microbe interface. J Chem Ecol. 2013;39:810–25.
Article
CAS
PubMed
Google Scholar
Wheatley R, Hackett C, Bruce A, Kundzewicz A. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegrad. 1997;39:199–205.
Article
CAS
Google Scholar
Bruce A, Wheatley RE, Humphris SN, Hackett CA, Florence MEJ. Production of volatile organic compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. Holzforschung. 2000;54:481–6.
Article
CAS
Google Scholar
Aguero LEM, Alvarado R, Martinez A, Dorta B. Inhibition of Aspergillus flavus growth and aflatoxin B1 production in stored maize grains exposed to volatile compounds of Trichoderma harzianum Rifai. Interciencia. 2008;33:219–22.
Google Scholar
Campos VP, Pinho RSC, de Freire ES. Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Ciencia e Agrotec Lavras. 2010;34:525–35.
Article
CAS
Google Scholar
Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX, Pare PW, Kloepper JW. Bacterial volatiles promote growth of Arabidopsis. Proc Nat Acad Sci. 2003;100:4927–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepeer JW, Pare PW. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004;134:1017–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56.
Article
CAS
PubMed
Google Scholar
Cortes-Barco AM, Goodwin PH, Hsiang T. Comparison of induced resistance activated by benzothiadiazole, (2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 2010;59:643–53.
Article
CAS
Google Scholar
Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol. 2011;13:3047–58.
Article
CAS
PubMed
Google Scholar
Kai M, Piechulla B. Plant growth promotion due to rhizobacterial volatiles—an effect of CO2? FEBS Lett. 2009;583:3473–7.
Article
CAS
PubMed
Google Scholar
Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14:1–4.
Article
CAS
PubMed
Google Scholar
Xie X, Zhang H, Paré PW. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav. 2009;4:948–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailly A, Weisskopf L. The modulating effect of bacterial volatiles on plant growth. Plant Signal Behav. 2012;7:79–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNeal KS, Herbert BE. Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci Soc Am J. 2009;73:579–88.
Article
CAS
Google Scholar
Polizzi V, Adams A, Picco AM, Adriaens E, Lenoir J, Peteghem CV, Saegar SD, Kimpe ND. Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with sick building syndrome. Build Environ. 2011;46:945–54.
Article
Google Scholar
Hung R, Lee S, Bennett JW. Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol. 2015;99:3395–405.
Article
CAS
PubMed
Google Scholar
Pasanen P, Korpi A, Kalliokosi P, Pasanen AL. Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environ Int. 1997;23:425–32.
Article
CAS
Google Scholar
Fiedler K, Schutz E, Geh S. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health. 2001;204:111–21.
Article
CAS
PubMed
Google Scholar
Jelen H, Blaszczyk L, Jerzy C, Rogowicz K, Strakowska J. Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog. 2014;13:589–600.
Article
Google Scholar
Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 2007;175:417–24.
Article
CAS
PubMed
Google Scholar
Pierik R, Mommer L, Voesenek LACJ. Molecular mechanisms of plant competition: neighbor detection and response strategies. Funct Ecol. 2013;27:841–53.
Article
Google Scholar
Blande JD, Holopainen JK, Niinemets Ü. Plant volatiles in a polluted atmosphere: stress response and signal degradation. Plant Cell Environ. 2014;37:1892–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardoza YJ, Alborn HT, Tumlinson JH. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J Chem Ecol. 2002;28:161–74.
Article
CAS
PubMed
Google Scholar
Tabata J, De Moraes CM, Hescher MC. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle. PLoS One. 2011;6(8):e23799. doi:10.1371/journal.pone.0023799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohanta TK, Occhipinti A, Atsbaha Zebelo S, Foti M, Fliegmann J, Bossi S, Maffei ME, Bertea CM. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS One. 2012;7:e32822. doi:10.1371/journal.pone.0032822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snoeren TAL, Kappers IF, Broekgaarden C, Mumm R, Dicke M, Bouwmeester HJ. Natural variation of herbivore-induced volatiles in Arabidopsis thaliana. J Exp Bot. 2010;61:3041–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai L, Koziel JA, O’Neal ME. Studying plant–insect interactions with solid phase microextraction: screening for airborne volatile emissions response of soybeans to the soybean aphid, Aphis glycines Matsumura (Hemiptera:Aphididae). Chromatography. 2015;2:265–76.
Article
CAS
Google Scholar
Joutsensaari J, Yli-Pirila P, Korhonen H, Arola A, Blande JD, Heijari J, Kivimaenpaa M, Mikkonen S, Hao L, Miettinen P, Lyytikainen-Saarenmaa P, Faiola CL, Laaksonen A, Holopainen JK. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests. Atmos Chem Phys. 2015;15:12139–57.
Article
CAS
Google Scholar
Llorens E, Camañes G, Lapeña L, García-Agustín P. Priming by hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles. Front Plant Sci. 2016;7:495.
Article
PubMed
PubMed Central
Google Scholar
Reisenman CE, Riffell JA, Duffy K, Pesque A, Mikles D, Goodwin B. Species-specific effects of herbivory on the oviposition behavior of the moth Manduca sexta. J Chem Ecol. 2012;39:76–89.
Article
PubMed
Google Scholar
Jardine KJ, Meyers K, Abrell L, Alves EG, Yanez Serrano AM, Kesselmeier J, Karl T, Guenther A, Chambers JQ, Vickers C. Emissions of putative isoprene oxidation products from mango branches under abiotic stress. J Exp Bot. 2013;64:3697–708.
Article
PubMed
Google Scholar
Tanaka K, Taniguchi S, Tamaoki D, Yoshitomi K, Akimitsu K, Gomi K. Multiple roles of plant volatiles in jasmonate-induced defense response in rice. Plant Signal Behav. 2014;9:e29247.
Article
PubMed Central
Google Scholar
Bailey BA, Melnick RL. The endophytic Trichoderma. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M, editors. Trichoderma: biology and applications. Boston: CABI; 2013. p. 152–72.
Chapter
Google Scholar