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Towards a better understanding of the role 
of nectar‑inhabiting yeasts in plant–animal 
interactions
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Abstract 

Flowers offer a wide variety of substrates suitable for fungal growth. However, the mycological study of flowers has 
only recently begun to be systematically addressed from an ecological point of view. Most research on the topic 
carried out during the last decade has focused on studying the prevalence and diversity of flower-inhabiting yeasts, 
describing new species retrieved from floral parts and animal pollinators, and the use of select nectar yeasts as model 
systems to test ecological hypotheses. In this primer article, we summarize the current state of the art in floral nectar 
mycology and provide an overview of some research areas that, in our view, still require further attention, such as 
the influence of fungal volatile organic compounds on the foraging behavior of pollinators and other floral visitors, 
the analysis of the direct and indirect effects of nectar-inhabiting fungi on the fitness of plants and animals, and the 
nature and consequences of fungal-bacterial interactions taking place within flowers.
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What is the link between flowers and fungi?
Flowers are essential structures in the reproductive cycle 
of angiosperms. Accordingly, most animal-pollinated 
plants spend abundant resources to make their flowers 
attractive to pollinators by, for example, displaying allur-
ing colors, secreting specific odors, forming characteris-
tic shapes, and providing nutritional and non-nutritional 
rewards [1–4].

When animals visit flowers (e.g. to feed on nectar, seek 
shelter or use these as mating/nesting places), pollen can 
get attached to their body surfaces and subsequently be 
spread to new flowers [1, 4]. Pollinators and non-polli-
nating visitors are not sterile but carry diverse micro-
bial communities, particularly consisting of bacteria 

and fungi, that may disperse to nectar and the surface of 
other floral parts such as the corolla, stamens, and pistil 
when visiting flowers [5–11]. The dispersal of microbes 
from flower to flower by animal vectors is a dynamic pro-
cess that keeps ongoing during the flower lifetime [6, 9, 
10]. Nevertheless, observations of microbial community 
assembly in floral nectar suggest that dispersed microor-
ganisms interact by competing for niche space and that 
the first microbial species to colonize the nectar pre-
cludes the successful establishment of subsequent immi-
grants [12, 13].

Traditionally, the mycological study of flowers has 
mostly focused on flower-infecting fungi, which use 
the nectaries and other flower structures to penetrate 
into plant tissues and eventually invade other organs. 
Remarkably, in some cases fungal infection leads to the 
formation of pseudo flowers (flower mimics) that can 
attract pollinators, via visual and/or olfactory cues, to 
get their infectious propagules spread to new plants [14]. 
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A detailed review of plant-parasitic fungi is neverthe-
less beyond the scope of this primer article, but has been 
extensively covered elsewhere [e.g. 14–16]. Instead, we 
will focus on recent advances and future prospects in the 
ecological study of nectar yeasts and, to a minor extent, 
other flower-inhabiting, non-pathogenic fungi.

Why is it worth studying flower‑inhabiting fungi?
Nearly 90% of all plant species, including 75% of domes-
ticated crops, profit from animal-mediated pollination 
[17]. As the main reward for their services, flowers offer 
nectar to the visiting pollinators providing them with 
sugars and other nutrients [17, 18]. Given the nutrient-
rich nature of nectar and other floral rewards, microor-
ganisms are commonly found in the flowers of a wide 
diversity of plant species worldwide [7, 8, 19–29]. Flower-
inhabiting microbes can alter the chemical composition 
of their habitat by consuming the available nutrients and/
or releasing metabolic by-products [30–32], which, in 
turn, may affect pollinators’ foraging behavior and have 
an impact on the reproductive success of the plant (see 
below). Furthermore, the disease-suppressing capabilities 
of some flower-inhabiting fungi such as Metschnikowia 
pulcherrima, Cryptococcus spp., and Aureobasidium pul-
lulans (e.g. by antagonizing phytopathogenic microor-
ganisms), should not be overlooked [33, 34]. In this way, 
the downstream effect of microbes in floral biology may 
have important consequences on plant-animal interac-
tions, plant fitness and plant health [19, 28, 35], and even-
tually have a relevant impact on agriculture, ecosystem 
dynamics and plant conservation. Finally, flower-inhabit-
ing fungi have a huge potential in industrial applications 
as demonstrated, for example, for second-generation 
bioethanol production [36]. Therefore, it is not surprising 
that flower microbiology is currently receiving a greater 
interest. An overview of flower-inhabiting microbes and 
their effects on plants and the animal visitors of flowers is 
presented in the Additional file 1.

Three advances in the last decade
Prevalence and diversity of flower‑inhabiting yeasts
Mycological study of flowers and their pollinators 
dates back more than a century. For example, in 1884, 
Boutroux [37] investigated the presence of yeasts (‘fer-
ments alcooliques’) in flowers, fruits and insects, and 
assessed their species diversity by detailed morphologi-
cal and physiological characterization. Since then, inves-
tigations carried out by different research groups, mostly 
during the last decade, have revealed that the flowers of 
phylogenetically-diverse plant species around the world 
are a habitat for fungi and, in particular, yeasts from the 
genus Metschnikowia (Ascomycota) [19, 20, 24, 27–29, 
38–42]. Other yeast genera that are commonly found 

in nectar and floral surfaces include Aureobasidium, 
Candida, Clavispora, Cryptococcus, Debaryomyces, 
Hanseniaspora, Kodamaea, Papiliotrema, Rhodotorula, 
Starmerella, Sporobolomyces, and Wickerhamiella, but 
most of these other yeasts are generally less abundant 
than Metschnikowia spp. [19, 20, 24, 27–29, 38, 40–43]. 
Besides, it is foreseeable that this list of genera will keep 
expanding as new studies of fungal presence in flowers 
are increasingly published.

So far, most mycological surveys of flowers have 
focused on the yeast communities associated to floral 
nectar, whereas the presence of fungi in other floral parts 
has only been addressed in a few instances. For example, 
Pusey et al. [34] characterized the epiphytic populations 
of yeasts and yeast-like fungi on apple (Malus pumila 
cultivars ‘Gala’ and ‘Red Delicious’) stigmas, and hyp-
anthia during primary bloom and identified some fungi, 
including Cryptococcus spp., that were able to suppress 
the bacterial species Erwinia amylovora (causal agent of 
fire blight in pome fruit trees). Furthermore, Pozo et al. 
[44] analyzed the occurrence of yeasts in the outer and 
inner corolla, pollen, and nectar of Digitalis obscura and 
Atropa baetica plants from south-eastern Spain, and 
found for both host species a higher yeast species rich-
ness in corolla samples than in pollen and nectar. More 
recently, Klaps [29] studied the diversity of culturable 
yeasts inhabiting the nectar, stamina and styles of Metro-
sideros polymorpha, a tree endemic to Hawaii (USA). The 
results of this latter study showed that M. polymorpha 
flowers are inhabited by species-poor yeast communi-
ties that are dominated by ascomycetous taxa. Addition-
ally, the yeast communities associated to specific floral 
structures of M. polymorpha showed differences in spe-
cies richness and phylogenetic diversity, both of which 
were higher for stamina and styles than for nectar [29]. 
Such microhabitat-dependent variation in species rich-
ness may be due not only to the large morphological and 
physiological differences occurring within flowers, but 
also to the filtering effect of microbial diversity exerted 
by specific floral microhabitats such as floral nectar [19, 
29, 45–47].

Very limited attention has been paid so far to the fun-
gal endophytes of flowers, with most published studies 
focusing on the presence of specific fungal pathogens 
or mycotoxin producers in the flowers of economically-
important plants, such as eucalyptus trees (Eucalyptus 
globulus, [48]) and pasture grasses (Festuca spp. and 
Lolium spp., [49]). Additionally, Martinson et  al. [50] 
examined the diversity and composition of the endo-
phytic fungal communities associated with fig (Ficus 
spp.) flowers at different developmental stages. Non-
significant differences were found in this latter study in 
the fungal communities associated with non-pollinated 
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flowers of six different species of Ficus, or between gall- 
and seed-flowers (which are likely to receive wasp’s eggs 
and pollen, respectively). However, the endophytic com-
munities differed significantly in fig flowers after pollina-
tion vs. before pollination, and between Ficus lineages 
with active vs. passive pollination syndromes [50].

Flowers as reservoirs of undescribed fungal taxa
Flowers and their animal visitors are being increasingly 
recognized as a rich source of undescribed fungal spe-
cies [19, 29, 43]. For example, the study of these habitats 
has led to the discovery of more than 50 new yeast spe-
cies during the last decade, most of which were classified 
within the ascomycetous genera Metschnikowia, Wick-
erhamiella, Starmerella and Kodamaea [43, 51–60]. In 
contrast, descriptions of new species of mycelial fungi 
obtained from flowers are much scarcer (but see, for 
example, [61]).

An important limitation of some descriptions of new 
species of flower-inhabiting fungi is that isolates were 
obtained by enrichment culture or maceration of whole 
flowers or fragments of them (e.g. [58, 60, 62]), without 
further information about the specific microhabitats 
hosting the new species. Furthermore, evaluating the bio-
geographic distribution of floral-inhabiting fungi remains 
challenging because of the limited number of studies 
performed so far in some locations and, in particular, 
in tropical regions where most angiosperm’s diversity 
is distributed [29, 43]. In this regard, de Vega et al. [43] 
predicted that nectar yeast diversity should increase in 
habitats with a higher phylogenetic diversity of plants 
and a concomitant higher diversity of functional pollina-
tor guilds.

Nectar yeasts as model systems in ecology
Nectar yeasts are currently considered a powerful study 
system for testing ecological theory of processes affect-
ing community assembly, such as environmental filtering, 
dispersal, historical contingency, and meta community 
dynamics [6, 10, 13, 46, 63–65].

There are several characteristics that make nectar 
yeasts well suited for microcosm studies in ecology, 
including their short generation times, the relative sim-
plicity of their communities (1.2 culturable yeast species/
nectar sample on average [28]), and the fact that nectar 
habitats are arranged in a well-defined hierarchical struc-
ture of increasing complexity (nectaries within flowers, 
flowers within individual plants, plants within popula-
tions, and so on), thus allowing multiscale approaches 
[63]. Moreover, nectar yeast communities can be easily 
manipulated and monitored over time [63]. The poten-
tial of other flower-associated microbes (e.g. epiphytic 
communities of petals and other floral surfaces) as model 

systems in ecological research remains to be explored in 
detail, but the results obtained by Russell et al. [9] when 
analyzing how the foraging behavior of the bumble bee 
Bombus impatiens shapes the dispersal of the bacterium 
Pseudomonas fluorescens among and within natural and 
artificial flowers are promising in that regard. In par-
ticular, the authors observed that bee foraging behavior 
affected the acquisition and deposition of P. fluorescens, 
and that the microbes acquired from the corolla were 
mainly deposited on the corolla of other flowers, fol-
lowed by the stamens, and least on the nectary/pistil [9].

Three areas ripe for development
Effect of fungal volatile organic compounds on animal 
behavior
The importance of flower-associated fungi for plant-
animal mutualisms has only recently been explicitly 
addressed. Research on this issue is still limited in scope 
and mostly involves a few species of yeasts. Neverthe-
less, there is already enough evidence to conclude that 
flower-inhabiting yeasts can produce species-specific 
blends of volatile organic compounds (VOCs) that alter 
the behavior of pollinators and other floral visitors [66–
70]. Production of VOCs attracting insects and other 
animals may be especially advantageous for special-
ist yeast species that strongly rely on animal vectors to 
travel to new habitats. For example, the VOCs emitted 
by the nectar specialists M. reukaufii and M. gruessii are 
attractive to the nectar-feeding aphid parasitoid Aphidius 
ervi (Hymenoptera), whereas those produced by yeast 
generalist species such as Hanseniaspora uvarum and 
Sporobolomyces roseus have a neutral or deterrent effect 
on the parasitoid [69, 70]. Similarly, results of controlled 
laboratory assays and field experiments have shown that 
M. reukaufii is either attractive [66, 71–73] or not deter-
rent to bee pollinators [74]. Rering et al. [66] found that 
antennal responses of honey bees were much greater in 
response to compounds like 2-butanol, which was only 
produced by M. reukaufii, than to the other compounds 
emitted by any of the tested species. Further research is 
needed to elucidate the actual effects of this compound. 
Additionally, it still remains difficult to predict the effects 
of yeast VOCs on floral visitors as they not only depend 
on the emitting and receiving species (i.e. yeast and ani-
mal, respectively), but also on the concentration of the 
compounds and their interaction with other compounds 
present in the VOC blend [75].

Notably, it has been recently observed that the chemi-
cal cues produced by epiphytic microbes (both yeasts and 
bacteria) occurring on the petals of flowers can mediate 
both learned and innate components of Bombus impa-
tients preference, and that the learning of such micro-
bial community cues is associative [67]. Likewise, A. ervi 
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parasitoids can rapidly learn to associate the volatiles 
released by nectar yeasts with the presence of a suitable 
food source [70]. Additionally, it seems that B. impa-
tients can respond differentially to olfactory vs. gustatory 
cues produced by nectar microbes [68]. In particular, the 
VOC blend produced by the acetic acid bacterium Asaia 
astilbes was found to be significantly more attractive to 
B. impatients than the mixture of VOCs produced by M. 
reukaufii but, nevertheless, the insect preferentially con-
sumed the nectar fermented by the latter species [68]. 
Therefore, it seems that both associative learning and 
olfactory vs. gustatory cues may be involved in plant-
animal signaling, but the specific action of individual 
compounds emitted by the different species of flower-
inhabiting fungi remains to be further explored.

Effect of flower‑inhabiting fungi on plant and animal 
fitness
The limited research carried out so far on the effects of 
flower-inhabiting fungi on plant fitness has focused again 
on M. reukaufii. For example, Eisikowitch et  al. [76] 
demonstrated that this yeast species inhibits pollen ger-
mination in Asclepias syriaca by causing the immediate 
death of the growing microgametophyte. Moreover, Her-
rera et al. [71] reported that experimental inoculation of 
M. reukauffi into the floral nectar of Helleborus foetidus 
resulted in a reduction of the number of pollen tubes in 
the style, fruit set, seed set, and mass of individual seeds 
produced, therefore having detrimental effects on polli-
nation success and plant maternal fecundity. Such find-
ings were interpreted as the combined consequence of a 
possible limitation of H. foetidus maternal fecundity in 
the study season due to pollen quality, and longer vis-
its by pollinators to yeast-containing flowers that would 
increase the proportion of self-pollen in stigmatic pol-
len loads [71]. In contrast, Vannette et al. [77] found no 
detrimental effects of M. reukauffi on estimates of female 
fitness in the hummingbird-pollinated plant Mimulus 
(Diplacus) aurantiacus. Finally, Schaeffer and Irwin [72] 
did not find any evidence that inoculation of Delphinium 
nuttallianum flowers with M. reukauffi directly or indi-
rectly affected female reproduction but, in contrast, the 
authors detected positive effects of yeast presence on 
pollen donation (i.e. male plant reproduction). All in all, 
it seems that the effect of nectar-inhabiting yeasts on 
plant fitness may depend not only on their direct effects 
on pollinators (see in previous subsection), but also on 
plant specific attributes such as flower morphology, plant 
mating system, the component of reproduction meas-
ured, and the pollen limitation experienced [28, 71, 72]. 
Additionally, the specific effect(s) on plant fitness of nec-
tar inhabitants other than M. reukauffi and the fungal 

communities associated to other floral parts should be 
addressed in the future.

Knowledge about the effects of flower-inhabiting fungi 
on the fitness of animals is also very scarce. Neverthe-
less, Sobhy et  al. [69] reported that the modification of 
nectar’s chemistry caused by M. gruessii and M. reukaufii 
had no apparent adverse effect on the longevity and sur-
vival of adult A. ervi individuals, whereas the parasitoids 
that fed on nectars fermented with Aureobasidium pul-
lulans, H. uvarum or S. roseus showed shorter longevity 
and lower survival. A similar species-dependent effect of 
microbial modification of nectar on insect longevity has 
also been reported for nectar-inhabiting bacteria [78]. 
In any case, it remains to be established whether nectar 
microbes can also affect other life history parameters 
such as fecundity and oviposition frequency, or if other 
flower-visiting animals respond differently [69, 78].

Fungal‑bacterial interactions
Most studies on the flower–insect–microbe system to 
date have focused on yeasts, and it is only recently that 
also bacteria have been studied in this regard [9, 10, 13, 
66–68, 74, 77–80]. Nevertheless, very limited attention 
has been given to potential fungal–bacterial interactions, 
even when recent evidence suggests that such interac-
tions drive the assembly of nectar microbial communi-
ties and might affect plant–animal interplays [45]. The 
limited information currently available on the potential 
interactions taking place between flower-inhabiting fungi 
and bacteria mostly came from the analysis of co-occur-
rence patterns of nectar yeasts and bacteria [20], and 
the study of microcosms mimicking floral nectar [81]. 
Potential mechanisms of fungal–bacterium interactions 
in floral microhabitats worthy of being studied include 
the formation of physical complexes (e.g. cell aggregates, 
multi-species biofilms, and endosymbiotic associations), 
nutritional interactions (competition, syntrophy, cross-
feeding, etc.), antibiosis, signaling-based interactions (e.g. 
quorum sensing), and horizontal gene transfer between 
fungal and bacterial cells [45].

Conclusions
Despite recent advances, the study of the diversity and 
ecological significance of flower-inhabiting fungi is still in 
its infancy. So far, most research has focused on nectar 
yeasts, overlooking that pollinators generally encounter 
other floral structures while searching for the nectar-
ies and, in some cases, they may actually seek rewards 
other than nectar, including pollen, oils, stigmatic secre-
tions, and several non-nutritive rewards [1, 4, 9]. Despite 
recent advances in the field, mostly related to the diver-
sity and taxonomic study of floricolous fungi, there is still 
limited information on the impact of fungal activity on 
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plant reproduction and the behavioral responses of floral 
visitors. Given the huge ecological and economic impor-
tance of plant pollination at a global scale, we predict that 
the study of flower-inhabiting microbes will be a research 
priority in the near future.
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