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Abstract 

Background:  The bacterial CRISPR/Cas genome editing system has provided a major breakthrough in molecular 
biology. One use of this technology is within a nuclease-based gene drive. This type of system can install a genetic 
element within a population at unnatural rates. Combatting of vector-borne diseases carried by metazoans could 
benefit from a delivery system that bypasses traditional Mendelian laws of segregation. Recently, laboratory studies in 
fungi, insects, and even mice, have demonstrated successful propagation of CRISPR gene drives and the potential util-
ity of this type of mechanism. However, current gene drives still face challenges including evolved resistance, contain-
ment, and the consequences of application in wild populations. Additional research into molecular mechanisms that 
would allow for control, titration, and inhibition of drive systems is needed.

Results:  In this study, we use artificial gene drives in budding yeast to explore mechanisms to modulate nuclease 
activity of Cas9 through its nucleocytoplasmic localization. We examine non-native nuclear localization sequences 
(both NLS and NES) on Cas9 fusion proteins in vivo through fluorescence microscopy and genomic editing. Our 
results demonstrate that mutational substitutions to nuclear signals and combinatorial fusions can both modulate the 
level of gene drive activity within a population of cells.

Conclusions:  These findings have implications for control of traditional nuclease-dependent editing and use of gene 
drive systems within other organisms. For instance, initiation of a nuclear export mechanism to Cas9 could serve as a 
molecular safeguard within an active gene drive to reduce or eliminate editing.
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Background
Control of biological populations is critical to agriculture, 
ecological conservation, and human health. Numerous 
methods have been employed to remove invasive species 
[1, 2], crop-damaging pests [3–6], or metazoans that har-
bor diseases [7, 8] including physical barriers, chemical 
agents, and/or natural predators or competitors. How-
ever, the ability to genetically modify an entire species 

has been hindered by the natural laws of segregation—
introduction of a genetic element through natural breed-
ing would require an unattainable number of modified 
individuals to be released into the wild. Given the intro-
duction of CRISPR/Cas9 as an efficient, convenient, and 
universal genome editor [9–15], a mechanism has been 
developed that is Super-Mendelian in nature: a nuclease 
“gene drive.”

This arrangement of the CRISPR components is simple 
in design, yet powerful in application. The basic archi-
tecture includes a nuclease of choice (usually S. pyo-
genes Cas9, although many alternatives and engineered 
variants now exist) and the corresponding single guide 
RNA (sgRNA) expression cassette integrated within the 
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genome. Placement of Cas9/sgRNA could be at a safe 
harbor locus or could delete or disrupt an existing endog-
enous gene. In the case of the former, the gene drive (GD) 
would likely also contain a “cargo” element—the intended 
genetic element to be delivered to the entire population. 
This could include any number of variations including 
endogenous or exogenous DNA to modify the organism 
itself (e.g. imposed fitness cost) or to aid in the separa-
tion between the host and disease-causing agent. Once 
expressed, the nuclease is primed by the guide RNA to 
target the wild-type copy of the gene (or position) on 
the homologous chromosome within a diploid genome 
(within the progeny between a gene drive individual and 
a wild-type individual) to create a double strand break 
(DSB). The unique arrangement of the GD relative to the 
DSB allows the expression cassette for Cas9/sgRNA itself 
to serve as the donor DNA for homology directed repair 
(HDR). The GD copies itself to the wild-type chromo-
some to repair the break and replaces the entire endog-
enous locus; a heterozygous cell (GD/WT) becomes a 
homozygous (GD/GD) cell. Action of a gene drive within 
a population would allow the rapid “forced” propagation 
of any genetic element in a small number of generations 
and would require only a small number of released GD 
individuals.

There are numerous applications of gene drive biotech-
nology to control and alter biological populations includ-
ing global challenges such as eliminating insect-borne 
diseases [16–18]. Recent experimental [19–24] and com-
putational studies [25–27] highlight the potential of GD 
systems. However, there remain many unknowns sur-
rounding implementation and management of this new 
technology (including accidental or malicious release 
of such a system without any safeguard or inhibitory 
mechanism). Release of a GD-organism has the poten-
tial to modify a portion of the natural population of the 
chosen species, even using the current available gene 
drives (for which GD-resistance is still an ongoing issue) 
[28]. Therefore, it is critical to identify means to control, 
titrate, inhibit, or reverse gene drive systems to modulate 
or slow their progression, and as a failsafe should removal 
of GD individuals become necessary.

Our previous work focused on examination of con-
served components of CRISPR gene drives (e.g. nucle-
ase, guide RNA, DNA repair) in budding yeast to identify 
modes of control, regulation, and inhibition of drive 
success in  vivo [29, 30]. A variety of molecular mecha-
nisms have been shown to modulate Cas9-based edit-
ing including nuclease expression, guide RNA sequence, 
Cas9–dCas9 fusions, anti-CRISPR mutants, and nucleo-
cytoplasmic shuttling of tagged Cas9. Here, we expanded 
upon our previous work [29] (which focused on utiliz-
ing the SV40 signal) to examine additional NLS and NES 

combinations appended to S. pyogenes Cas9–eGFP fusion 
constructs within an artificial GD system. We tested 
three monopartite NLS sequences, mutated signals, and 
two NES signals to demonstrate titration of gene drive 
activity in a diploid yeast model.

Results
Non‑native nuclear localization signals can direct Cas9 
localization in vivo
Nucleocytoplasmic transport of macromolecules within 
eukaryotic cells is highly conserved [31–35] and has been 
recognized as a universal requirement of gene editing in 
living systems—namely, the intended nuclease must gain 
access to the interior of the nucleus and genomic content. 
This intracellular trafficking system involves recognition 
of nuclear import sequences by karyopherins for transit 
through the nuclear pore complex [36–38]. Use of the 
CRISPR/Cas system for alteration of the genome typi-
cally includes appending one or more NLSs to the nucle-
ase (e.g. Cas9) and the classical NLSSV40 is often used 
for this purpose [10, 39, 40]. However, several groups 
have demonstrated that alteration of the nuclear locali-
zation of Cas9 can serve as a means to control editing. 
For instance, the iCas system was constructed to pre-
vent nuclear entry until addition of an external cue [41]. 
Moreover, design of a split Cas9 included use of a NES 
sequence to restrict localization of one of the two halves 
of the nuclease until addition of an exogenous signal [42]. 
Finally, optimization of CRISPR-based editing in various 
organisms and cell types has focused on the placement, 
number, and identity of the included NLS sequence—
whether native or non-native to the species of interest 
[43–49].

Our previous work in budding yeast demonstrated 
that the dynamic localization for Cas9 fusions harboring 
both NLS and NES signals resulted in a variable level of 
genomic editing (both in haploid and diploid cells) [29]. 
However, this work focused exclusively on the commonly 
used NLSSV40 signal. A previous study [50] demon-
strated that mutational substitutions to a set of artificially 
derived NLS signals (from random peptide libraries) 
allowed for a spectrum of nuclear import efficiencies 
using a GFP-based reporter system. We sought to test 
whether alternative nuclear signals could still direct Cas9 
to the nucleus and allow for a titration of DSB formation 
in a CRISPR gene drive diploid strain.

Design of our gene drive system allows for the safe 
and programmable examination of various CRISPR 
components. Briefly, two sets of “unique” Cas9 target 
sites (termed u1 and u2) [51] are positioned flanking 
both the inducible Cas9-expression cassette (“drive”) 
and the corresponding locus harboring a selectable 
marker (“target”). Activation of Cas9 and inclusion of 
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the correct sgRNA fragment (expressed from a plasmid) 
would cause multiplexing and cleavage of the dual (u1) 
sites in the target chromosome and repair via homolo-
gous recombination using the drive-containing chro-
mosome as the source of donor DNA (Fig. 1). Haploid 
yeast strains harboring an inducible Cas9–eGFP con-
struct were generated using various C-terminal signals: 
NLS signals included the classical SV40 and three other 
monopartite signals with sequences containing either 
four (NLS-I), three (NLS-II), or two (NLS-III) lysine 
and/or arginine residues within the motif whereas the 
export signals (NES-IV and NES-V) were derived from 
the ΦX3ΦX2ΦXΦ [52] consensus (Fig. 2a). These NLS 
signals were selected from a previous study [50]: they 
represented a diverse set of artificially derived peptides 
found to direct nuclear import across different cellular 
systems—we chose several that (1) varied in the num-
ber and placement of basic residues and (2) had a num-
ber of residues within the signal that, when mutated, 
were found to generate a spectrum of activities through 
an in  vivo cellular assay. Following Cas9 induction in 
media containing galactose, strains were imaged by 
fluorescence microscopy (Fig.  2b). Localization was 
determined by labeling the nuclear periphery with a 
mCherry-marked integrated copy of Nup188, a nuclear 
pore complex component. For all three non-native 
NLSs, Cas9 localized to the nucleus and for both NES-
tagged Cas9 fusions, eGFP signal was occluded from 
the nucleus. However, despite the steady-state localiza-
tion of the Cas9–eGFP–NES constructs, our previous 
findings suggested that a small amount of editing (and 

gene drive activity in diploids) does take place, albeit 
after significantly longer nuclease induction times [29].

Mutational alterations to NLS or NES sequences can 
modulate gene drive activity
We tested each NLS and NES sequence appended to 
Cas9–eGFP for its effect on gene drive activity in diploid 
yeast. The general methodology employed to assay gene 
drive function in vivo included a variable induction time 
in galactose followed by recovery on dextrose-containing 
media (Fig.  3a). Following the formation of single colo-
nies, yeast were transferred to medium lacking histidine 
to test for the presence of the SpHIS5 marker—equivalent 
to yeast HIS3—within the target strain. Upon success-
ful action of the drive, the entire target locus is removed, 
and colonies are unable to grow in the absence of histi-
dine (e.g. SD-HIS plates). Importantly, our artificial sys-
tem does not impose any selection for or against action 
of the gene drive unlike other possible arrangements that 
challenge cells by selecting for successful DSB/repair 
events. Compared to the NLSSV40-tagged strain, all three 
artificial NLS signals (I–III) caused a dramatic loss of 
growth on SD-HIS; constructs harboring the NES (IV, V) 
retained a large number of viable colonies (Fig. 3b). Previ-
ous work suggested that mutations to positions along the 
length of these artificial signals altered their effectiveness 
at promoting nuclear import by a fluorescence reporter 
system in live cells [50]. Therefore, we generated twelve 
substitutions across NLS(I–III) and examined their gene 
drive activities in  vivo (Fig.  3c). The total percentage of 
colonies sensitive to the SD-HIS condition was quantified 

Fig. 1  Design of an artificial CRISPR gene drive system in Saccharomyces cerevisiae. a General schematic of a gene drive in a diploid genome. b 
An artificial gene drive system was constructed at the yeast HIS3 locus. The inducible GAL1/10 promoter drives expression of a codon-optimized S. 
pyogenes Cas9 containing a C-terminal eGFP fusion followed by a chosen nuclear signal sequence (NLS/NES* see Fig. 2a). An inserted terminator 
(from CDC10) was placed downstream of the Cas9 coding sequence followed by a selectable marker cassette. This included the non-native 
MX-based promoter and terminator sequences driving constitutive expression of the C. albicans URA3 gene. The entire gene drive system was 
flanked by two identical artificial sites, termed (u2), that do not exist in the native genome [29, 51]. The design of the drive also included an 
engineered “target” cassette (bottom) built within a strain of the opposite mating type at the HIS3 locus. This included an artificial “cargo” gene and a 
yeast-based terminator (from SHS1). A modified selectable marker cassette included the constitutive CCW12 (cell wall) promoter sequence driving 
the S. pombe HIS5 gene (functional equivalent to yeast HIS3). Finally, two (u1) sequences were inserted flanking the entire target locus. To complete 
action of the drive, a high-copy plasmid (pGF-V1220) contained the cassette for the guide RNA (marked with LEU2)
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across multiple trials. As predicted, a NLSSV40 tag and a 
tandem NLSSV40–NLSSV40 tag allowed for > 95% activ-
ity at 5 h of Cas9 induction (1, 2). To ensure that high-
expression levels from a 5 h induction were not masking 
subtle effects of the alteration to the NLS signal, we also 
tested each strain at a lower 2.5 h induction. Many of the 
substitutions to other classes of NLS (I–III) displayed no 
change compared to the WT and only four of the twelve 
substitutions (6, 7, 11, and 14) had a modest decrease in 
activity. Therefore, these results demonstrate that some 
of the NLS alterations can partially reduce Cas9 editing 
in vivo to varying degrees.

The two NES signals tested on Cas9–eGFP included 
a PKI-like sequence [53] (NES-IV) as well as a simi-
lar NES with added leucine residues present within the 
motif (NES-V). A previous study reported that excessive 
hydrophobic amino acids could interfere with nuclear 
export signals [52]. Therefore, we tested a NES harbor-
ing six total leucine residues as opposed to only three in 
the PKI-like motif (Fig.  2a)—the expectation was that a 
reduction in NES effectiveness would manifest in higher 
nuclear residence time and gene drive efficiency. Our 
previous work demonstrated that a significantly longer 
(24  h) induction time was required to observe drive 
activity for a construct harboring only a single NES sig-
nal [29]; to allow for a comparison to the NLS-containing 
strains, we chose to treat cells in galactose for 2.5, 5, 10, 
and 24 h (Fig. 3d). For induction times less than 10 h, the 
gene drive activity (18, 19) remained below 50% (Fig. 3d). 
We noticed a subtle difference between the effectiveness 
of the two NES-containing constructs and it appeared 
that the original PKI-like motif (18) provided less drive 
activity across multiple time points compared to the 
sequences with added leucine residues (19). A tandem 

Fig. 2  Subcellular localization of S. pyogenes Cas9 tagged with 
various nuclear localization sequences. a Table of non-native NLS 
and NES sequences tested; basic residues are underlined for NLSs 
and hydrophobic residues are underlined for NESs. b Fluorescence 
microscopy of live yeast cells containing NLS sequences (GFY-3435 
to 3437) or NES sequences (GFY-3438, 3439) fused to eGFP-tagged 
Cas9 (also see Table 1). Yeast were cultured in galactose prior to 
imaging. An integrated copy of Nup188-mCherry marked the nuclear 
periphery. Representative images are shown; white dotted lines, 
outline of selected cells. Scale bar, 3 μm. Triangles indicate the yeast 
vacuole

Fig. 3  CRISPR gene drives using various NLS and NES fused to Cas9–eGFP. b Schematic of gene drive activation. Following diploid selection, 
yeast were grown to saturation overnight in media containing raffinose and sucrose lacking leucine. Cultures were back-diluted into rich medium 
containing galactose for a set number of hours, diluted to approximately 100–500 cells per agar plate (SD-LEU), and incubated for 48 h. Yeast 
colonies were velvet-transferred to SD-LEU and SD-HIS plates for up to 24 h before imaging. If the GD was successful and removed the target HIS3 
locus (harboring SpHIS5), then colonies would be sensitive to the SD-HIS condition. b Haploid yeast strains (GFY-2756, and GFY-3465-3469) were 
mated to target strains (GFY-3206 and 3207), diploids selected, and gene drives activated for 5 h. Yeast were plated on SD-LEU and transferred 
to a final SD-LEU plate (control) and SD-HIS plate to assess gene drive activity. c The number of colonies sensitive on SD-HIS provided a measure 
for “percent gene drive activity”. Diploid gene drives were tested using strains from b and mutational substitutions made to each NLS (GFY-3470, 
3443-3447, 3449-3452, and 3454-3456, numbered 1–17) where Cas9 was induced for either 2.5 h or 5 h and quantified for drive activity. Error, SD. 
NLS(I–III) sequences can be found in Fig. 2a. d Gene drive strains (GFY-3468, 3469, 3471, 3472, 2758, 3716 and 3717) harboring a NES signal in the 
absence or presence of additional NLSs were tested for 2.5 h, 5 h, 10 h, and 24 h of Cas9 induction and quantified as in (c). Error, SD. Red asterisk, 
this construct harbors the ADH1(t)-prMX-KanR-MX(t) cassette following Cas9–eGFP. e Top, illustration of the gene drive/target arrangement and the 
position of oligonucleotides (Additional file 1: Table S1) used. Middle, PCRs were performed on chromosomal DNA from clonal isolates from each 
drive (5 h). The numbers (1–17) correspond to strains from Fig. 3c. The expected sizes for each PCR a–d are shown along with markers. Images were 
cropped from independent gels or portions of larger gels and are divided by white lines. Two isolates were obtained with no galactose activation 
(1’ and 2’; dextrose only treatment) from GFY-2756 (Strain 1). All colonies were tested for ploidy status (diploid) and growth on SD-URA (drive) 
and SD-HIS (target). Strain GFY-2756 was tested on G418 media. Below, A similar analysis of clonal isolates from the NES-containing strains was 
performed (24 h). Two isolates each (from strain 18 and 19) were chosen that were either resistant or sensitive to the SD-HIS condition

(See figure on next page.)



Page 5 of 11Goeckel et al. Fungal Biol Biotechnol             (2019) 6:2 

NES(PKI-like)–NES(PKI-like) signal (20) did not provide any 
significant change compared to a single NES alone. Pre-
viously, we found that a C-terminal fusion of the dual 
NLS(SV40)–NES(PKI-like) sequence to Cas9–eGFP (22) 
seemed to phenocopy a fusion of NES(PKI-like) alone [29]. 
Here, we constructed and tested the reciprocal fusion, 
NES(PKI-like)–NLS(SV40) (21), to determine its effect in vivo. 
We observed that both constructs displayed similar gene 
drive activities to a single NES signal, yet positioning 
of the NLSSV40 on the extreme C-terminus appeared to 
provide slightly higher activity (and less contribution 
from the NES). Finally, we included both NES signals 

in a construct also harboring two additional NLSSV40 
sequences—at the N-terminus and fused between Cas9 
and eGFP (23, 24). The competition between two NLS 
sequences versus one NES sequence provided a high 
level of gene drive activity, with a slight increase in activ-
ity from the construct harboring the leucine-rich NES 
(24). Together, these data illustrate that changes can also 
be made to either the primary sequence or placement of 
nuclear export signals to shift the level of editing in vivo.

Previous work has demonstrated that gene drives may 
induce a DSB but fail to copy the GD cassette to the tar-
get chromosome. In such cases, NHEJ causes repair of 
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the broken DNA ends and prevents HR-based propaga-
tion of the drive (e.g. GD “resistant” alleles). Therefore, 
to confirm that yeast sensitive to the SD-HIS condition 
had lost the target allele at the HIS3 locus, we obtained 
clonal isolates from each gene drive experiment, tested 
for each of the included markers, assayed ploidy status, 
and examined purified genomic DNA by multiple diag-
nostic PCRs (Fig. 3e). For diploids lacking galactose treat-
ment (0  h), four independent PCR reactions illustrated 
the presence of both the gene drive and target constructs. 
However, for isolates subjected to galactose induction 
(5 h), only the two PCRs corresponding to the gene drive 
allele (PCR-A, PCR-B) were present; reactions for the 
target allele were unable to amplify the expected frag-
ment (PCR-C, PCR-D) suggesting the diploid genome 
was now homozygous for the drive allele (1–17). A simi-
lar analysis was performed for eight clonal isolates from 
the NES strains (18, 19). However, we chose to sample 
two isolates that were sensitive and two samples resistant 
to the SD-HIS condition as there were still many colonies 
displaying each phenotype after 24  h (Additional file  1: 
Fig. S3). The expectation was that diploid colonies still 
growing on SD-HIS medium were still heterozygous for 
the drive and target alleles at the HIS3 locus. Diagnostic 
PCRs illustrated that the target allele was still present for 
surviving colonies and absent for colonies sensitive to 
SD-HIS (Fig. 3e, below). Given that these NES-containing 
strains had 24 h of galactose induction, the lack of editing 
(and GD activity) likely results from active nuclear export 
of Cas9. Collectively, these results demonstrated a con-
tinuum of gene drive activity ranging up to 100% in our 
yeast model across all Cas9–eGFP fusions with both NLS 
and/or NES signals (Fig. 3).

Discussion
Given that application of the CRISPR/Cas editing bio-
technology in eukaryotic systems requires delivery of 
Cas9/sgRNA to the nucleus, we focused on methodolo-
gies that could provide a new suite of molecular tools to 
control, inhibit, or modulate gene drive systems in vivo, 
although we recognize these techniques might be used 
for many types of genomic editing and could apply to 
alternative uses of the CRISPR system (e.g. dCas9). While 
there are still few studies on gene drives, the power and 
potential application for this technology is clear, despite 
the current challenges and obstacles. The ability to mod-
ify an entire population with a genetic element of choice 
presents numerous advantages including optimizing 
agricultural crops and animals, prevention of human dis-
ease, and ecological control on a large scale. However, 
ongoing testing of optimal designs including safeguards 
and controllable drives warrant further research and 
recent progress has been made in current systems [25, 

26, 54–56]. Previous efforts (both computational and 
experimental) have highlighted a variety of components 
that might serve as a platform for control or inhibition of 
gene drives [21, 26, 29, 30]. Here, we focused on altering 
the nucleocytoplasmic localization of Cas9 for titration 
of editing.

While a popular choice for nuclear import across 
model systems has been the monopartite NLSSV40 signal, 
others have found that varying the position, copy num-
ber, or identity of the NLS (native or non-native) can alter 
genomic editing [43, 46, 48, 57, 58]. Given the conserva-
tion of nuclear import machinery across eukaryotes and 
the wide variety of possible nuclear import sequences 
(native or artificial), this could present a complex plat-
form for tuning or optimizing Cas9 nuclear import in 
any species of interest. As we have demonstrated here, 
three artificially generated NLS signals allowed for effi-
cient nuclear entry and subsequent gene drive activity 
in  vivo; also, some mutational substitutions to the NLS 
primary sequence partially reduced editing. Future itera-
tions might include modifications to signal positioning 
(N- or C-terminus, or between fusion proteins), the dis-
tance from Cas9, and local residue context surrounding 
the signal.

Previous studies have evaluated the sequence com-
position of many natural and artificial NLS and NES 
sequences through mutagenesis [59], in  vivo subcellular 
localization assays [50, 52], in vitro binding experiments 
[60], and computational analyses [61–63]. Consensus 
sequences have been developed for different classes of 
NLS (for example, the K–(K/R)–X–(K/R) monopartite 
signal) that highlight critical residues within the signal. 
However, there is also a contribution of flanking amino 
acids (not part of the consensus) that are upstream, 
downstream, or within the NLS itself [59, 64–66]. For 
NESs, multiple classes of signals have now been defined 
that are variations of the Φ–X3–Φ–X2–Φ–X–Φ con-
sensus. Previous work has highlighted further prefer-
ences and restrictions to NES motifs and these may also 
be context-dependent within three-dimensional protein 
structures [52, 61, 62]. For instance, the presence of cer-
tain residues (such as proline) may disrupt NESs [52]. 
Comparison of our NES(IV) versus NES(V) illustrated 
that the addition of hydrophobic residues (leucine) was 
less efficient as an export signal, similar to previous find-
ings [52]. Given the large variation in nuclear signals, the 
contribution of individual residues to NLS or NES func-
tion will require experimental validation. Furthermore, 
the assays used to detect nuclear import and/or export 
need to be taken into consideration. In the study per-
formed by Kosugi et al. [50], a GFP reporter system in live 
cells was used to quantify the success of nuclear import. 
In our gene drive experiments, we assayed the effect of 



Page 7 of 11Goeckel et al. Fungal Biol Biotechnol             (2019) 6:2 

Cas9-dependent DSB formation followed by DNA repair 
and a resulting growth phenotype. Furthermore, inter-
pretation of nuclear entry or exit may be complicated by 
additional cryptic signals (enhancement or competition 
with the signal(s) of interest) or protein size and entry 
through the nuclear pore complex.

Of note, our data demonstrates that inclusion of a NES 
(even when not paired with any NLS signal) still allowed 
for some level of editing as Cas9 may gain entry to the 
nucleus through diffusion followed by export; editing 
without any appended NLS has also been observed in 
previous studies [29, 43]. Therefore, we recommend use 
of various nuclear signal combinations to modulate and 
reduce, rather than eliminate, editing. However, nuclear 
restriction of Cas9 may still be useful when paired with 
other inhibitory mechanisms such as the AcrIIA2 and 
AcrIIA4 anti-CRISPR proteins [30], reduced or pro-
grammed expression of nuclease transcript [29], or other 
mechanisms to inhibit editing such as degradation of 
Cas9 [67].

Restriction of Cas9 nuclear localization has also been 
demonstrated in other cell types through (1) occlusion of 
a NLS signal or (2) tethering to the plasma membrane—
subsequent release was achieved by activation of a pro-
tease to cleave the tethered dCas9–NLS construct and 
allow transport into the nucleus [41, 68, 69]. However, 
our study provides experimental evidence for use of this 
general methodology for titration of gene drive activity. 
We envision that nuclear occlusion of Cas9 could also 
be achieved by alternative approaches. Expression of an 
inducible anti-GFP “nanobody”-containing peptide fused 
with an export signal might provide temporal control 
to regulate Cas9–GFP nucleocytoplasmic localization. 
In this way, activity might be reduced at a later point in 
time (or to a specific portion of a population) by caus-
ing an increase in Cas9 nuclear export. A secondary 
system that could modulate Cas9 activity—inducible by 
external stimuli—would provide a suite of new options 
for controlling gene drive propagation within a popula-
tion. This could be utilized as a molecular safeguard to 
slow or inhibit drives, allow for the timely use of anti-
drives or other countermeasures, or as a means to cycle 
gene drive-containing organisms with seasonal or envi-
ronmental changes. Alternatively, modification of the 
nuclear pore complex might allow for selective entry of 
a pool of Cas9 fusion constructs while restricting other 
variants or orthologs.

Conclusion
In this study, we expanded our analysis of nuclear traf-
ficking to control Cas9 editing within the context of 
a gene drive system. We predict that a combinatorial 
approach of altering nuclease (transcript and/or protein) 

levels, NLS/NES signals, cellular traps, and other induc-
ible/tunable systems might be employed in the design of 
future gene drive systems that are safe, controllable, and/
or reversible.

Materials and methods
Yeast strains and plasmids
Saccharomyces cerevisiae strains used in this study can 
be found in Table 1. Molecular biology techniques were 
used to generate all engineered constructs [70]. The gen-
eral strategy included first constructing a CEN-based 
plasmid using in vivo assembly in yeast [71] using a mod-
ified lithium acetate transformation protocol [72]. Next, 
PCR amplified DNA of the entire assembled cassette, fol-
lowed by treatment with DpnI enzyme (to remove tem-
plate DNA), was integrated into the appropriate haploid 
yeast genome (for Cas9, the HIS3 locus). For generation 
of NLS substitutions, a modified PCR mutagenesis pro-
tocol was used [73]. To integrate various eGFP–NLS or 
eGFP–NES combinations, a second integration construct 
was generated; universal eGFP and MX(t) sequences were 
used for homologous recombination (Table  1). Finally, 
selection markers were converted using a third round of 
integration (e.g. from SpHIS5 to CaURA3) using com-
mon CDC10(t) and the MX(t) sequences. The only plas-
mid used in this study was the high-copy pRS425-based 
sgRNA(u1) vector (pGF-V1220) [29]. Diagnostic PCRs 
and Sanger DNA sequencing of all chromosomal modi-
fications was performed to confirm successful integration 
events (see Additional file 1: Fig. S1).

Culture conditions
Budding yeast were grown on solid agar medium or in 
liquid cultures; rich media, YPD (2% peptone, 1% yeast 
extract, 2% dextrose), or synthetic drop-out media (nitro-
gen base, amino acids, and ammonium sulfate) were 
used. Prior to galactose metabolism (2%), cultures were 
grown to saturation in medium containing 2% raffinose 
and 0.2% sucrose. All sugars were filter sterilized.

Fluorescence microscopy
Haploid yeast cultures were grown to saturation in 
synthetic complete medium containing raffinose and 
sucrose overnight. Next, strains were back-diluted into 
rich medium containing galactose for 4.5 h at 30 °C and 
prepared on a glass slide [29]. Live cells were examined 
using a Leica DMI6000  fluorescence microscope (Leica 
Microsystems, Buffalo Grove, IL). A Leica DFC340 FX 
camera, 100 × lens, and fluorescence filters (Semrock, 
GFP- 4050B-LDKM-ZERO, mCherry-C-LDMK-ZERO) 
were used. Software for image capture and analysis 
included Leica Microsystems Application Suite and 
ImageJ (National Institute of Health). Images were taken 
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Table 1  Yeast strains used in this study

a  The SV40 nuclear localization signal was SRADPKKKRKV. The artificial (u1) sites have the sequence 5′ ATGA​CGG​TGG​ACT​TCG​GCT​ACG​TAGGG​CGATT 3′ where the 
bold is the 20 bp target and the PAM is underlined [51]. SpHIS5 refers to Schizosaccharomyces pombe HIS5 (the functional equivalent of S. cerevisiae HIS3)
b  The (u2) sequence includes 5′ GCT​GTT​CGT​GTG​CGC​GTC​CTGGG​ 3′ [51]. SpCas9 refers to Streptococcus pyogenes Cas9
c  The cloning strategy to construct GFY-3470 (and also GFY-3443-3447, 3449-3452, 3454-3456, 3465-3469, and 3471-3472) included first creating a parental vector 
(pGF-IVL1444) using yeast in vivo plasmid assembly [71] containing eGFP-SpeI(site)-CDC10(t)-prCCW12-SpHIS5-MX(t) on pRS315. Second, custom genes were 
synthesized (Genscript, Piscataway, NJ) containing the 3′ most 180 bp of eGFP, a C-terminal NLS or NES signal, stop codon, and 191 bps of the 3′ UTR of CDC10. Third, 
substitutions were made to the NLS sequence using a modified PCR mutagenesis protocol [73]. Fourth, the NLS/NES sequence was inserted into pGF-IVL1444 using 
in vivo assembly. Fifth, the entire construct (from eGFP through the MX terminator) was amplified using a high-fidelity polymerase (KOD Hot-Start, EMD Millipore), 
digested with DpnI, transformed into a yeast strain harboring an integrated prHIS3-(u2)-prGAL-SpCas9-eGFP-ADH1(t)-prMX-KanR-MX(t)-(u2)-HIS3(t) (GFY-2755), and 
selected on SD-HIS. Sixth, a second round of integration was used to convert the CDC10(t)-prCCW12-SpHIS5-MX(t) marker to CDC10(t)-prMX-CaURA3-MX(t) using pGF-
IVL1412 as a template. Note, for constructs harboring dual signals (e.g. NLSSV40–NLSSV40), two glycine residues were included between the two sequences. Integration 
of all constructs was confirmed by growth phenotype, diagnostic PCRs, and DNA sequencing
d  A previous study identified a number of novel classes of monopartite NLS signals from a random peptide library screen [50]. These were designated as “Class 2” NLS 
signals with a general structure of RXXKRXR (Class 2-I) or KRXR (Class 2-II) and a full consensus sequence of (P/R)XXKR(ˆED)(K/R) where (^ED) is any residue except Asp 
or Glu. The full sequences for the sampled NLSs included RAAKRPRTT and APAKRARTS, respectively

Strain Genotype References

BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 [74]

BY4742 MATα his3∆1 leu2∆0 lys2∆0 ura3∆0 [74]

GFY-3206a BY4742; his3Δ::(u1)::prCDC12::mCherry::NLSSV40::SHS1(t)::prCCW12::SpHIS5::MX(t)::(u1)::HIS3(t) [29]

GFY-3207 BY4742; his3Δ::(u1)::prCDC12::mCherry::SHS1(t)::prCCW12::SpHIS5::MX(t)::(u1)::HIS3(t) [29]

GFY-2756b BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLSSV40::ADH1(t)::prMX::KanR::MX(t)::(u2)::HIS3(t) [29]

GFY-3470c BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLSSV40::NLSSV40::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3465d BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLSClass2-I::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3443e BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(P6S)Class2-I::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3444 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(R1L)Class2-I::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3445 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(P6L)Class2-I::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3446 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(R1Q/P6L)Class2-I::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3447 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(R1Q/P6S)Class2-I::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3466d BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLSClass2-II::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3449 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(S9T)Class2-II::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3450 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(T8A)Class2-II::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3451 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(T8A/S9T)Class2-II::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3467f BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLSClass3::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3452 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(K4R)Class3::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3454 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(W7V)Class3::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3455 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(A10V)Class3::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3456 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLS(F11Y)Class3::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3468g BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NESPKI-like::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3469h BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NESConsensus::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3471 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NESPKI-like::NESPKI-like::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-3472 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NESPKI-like::NLSSV40::CDC10(t)::prMX::CaURA3::MX(t)::(u2)::HIS3(t) This study

GFY-2758 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP:: NLSSV40::NESPKI-like::ADH1(t)::prMX::KanR::MX(t)::(u2)::HIS3(t) [29]

GFY-3716i BY4741; his3Δ::(u2)::prGAL::NLSSV40SpCas9::NLSSV40::eGFP::NESPKI-like::CDC10(t)::prMX::KanR::MX(t)::(u2)::HIS3(t) This study

GFY-3717 BY4741; his3Δ::(u2)::prGAL::NLSSV40SpCas9::NLSSV40::eGFP::NESConsensus::CDC10(t)::prMX::KanR::MX(t)::(u2)::HIS3(t) This study

GFY-3435j BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLSClass2-I::CDC10(t)::prCCW12::SpHIS5::MX(t)::(u2)::HIS3(t) NUP188::mCherry::ADH1(t)::prM
X::CaURA3::MX(t)

This study

GFY-3436 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLSClass2-II::CDC10(t)::prCCW12::SpHIS5::MX(t)::(u2)::HIS3(t) NUP188::mCherry::ADH1(t)::prM
X::CaURA3::MX(t)

This study

GFY-3437 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NLSClass3::CDC10(t)::prCCW12::SpHIS5::MX(t)::(u2)::HIS3(t) NUP188::mCherry::ADH1(t)::prMX
::CaURA3::MX(t)

This study

GFY-3438 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NESPKI-like::CDC10(t)::prCCW12::SpHIS5::MX(t)::(u2)::HIS3(t) NUP188::mCherry::ADH1(t)::prM
X::CaURA3::MX(t)

This study

GFY-3439 BY4741; his3Δ::(u2)::prGAL::SpCas9::eGFP::NESConsensus::CDC10(t)::prCCW12::SpHIS5::MX(t)::(u2)::HIS3(t)NUP188::mCherry::ADH1(t)::pr
MX::CaURA3::MX(t)

This study
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using identical exposure times; representative cells were 
chosen for each image set and scaled together. Scale bars, 
3  μm. “Merged” images do not contain any additional 
processing from the two combined channels.

CRISPR gene drives in diploid yeast
Haploid yeast strains harboring the SpCas9 gene drive 
construct were first transformed with the high-copy 
LEU2-based sgRNA(u1) plasmid (pGF-V1220) and prop-
agated on SD-LEU plates [29]. Next, Cas9/sgRNA-con-
taining haploids were mated to target yeast strains of the 
opposite mating type on rich media for 24 h and trans-
ferred to diploid selection plates (SD-LEU-HIS) for three 
consecutive stages of selection. Diploids were cultured 
overnight to saturation (raffinose/sucrose), grown in rich 
medium containing galactose for (0 to 24  h) to express 
Cas9, diluted, spread onto SD-LEU medium at a density 
of 200–500 cells per plate, and incubated at 30  °C for 
48 h. Finally, colonies were replica-plated by velvet trans-
fer to a second SD-LEU and SD-HIS plate for 18–24  h, 
imaged, and the total surviving colony number was quan-
tified in a single-blind fashion (between 100 and 250 
colonies counted for each condition). Gene drive and tar-
get genome status were interrogated by diagnostic PCRs 
(also see Additional file 1: Fig. S2, Table S1) on isolated 
chromosomal DNA (also confirmed as diploids [29]). 
Genetic safeguards to contain yeast gene drives included 
the use of artificial sequences [51] programmed at the 
HIS3 locus (u1 sites for targeting), a self-excision module 
(u2 sites) flanking Cas9 constructs [29], an inducible pro-
moter driving Cas9 expression (prGAL1/10), and sgRNA 
plasmids on an unstable high-copy vector [21, 29].

Additional file

Additional file 1. Supplementary information.
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e  Mutations were chosen [50] for each of the classes of identified NLS signals
f  The consensus sequence for Class 3 NLS signals [50] was determined as KRX(W/F/Y)XXAF. The signal used was AAA​KRSWSMAF
g  The prototypical NES(PKI-like) signal sequence was slightly modified to yield a NES of LAKILGALDIN [52, 53]
h  The consensus sequence ΦX3ΦX2ΦXΦ where Φ is a hydrophobic residue (L, I, V, M, F, W, C, T, or A) of a Class 1a NES signal as determined previously [52]. The 
sequence used was LLQQLLLLQIN
i  Yeast strains GFY-3716 and GFY-3717 were constructed similar to GFY-3470 but were transformed to prHIS3-(u2)-prGAL-NLSSV40SpCas9-NLSSV40-eGFP-ADH1(t)-KanR-
(u2)-HIS3(t) yeast (GFY-2759). Following integration of the C-terminal tag along with the SpHIS5 marker, a final switch was performed (using pGF-IVL1412) to include 
the CDC10(t) sequence along with the KanR marker
j  The mCherry tag was appended to the C-terminus of NUP188 by transforming an amplified fragment of NUP188(CT)-mCherry-ADH1(t)-prMX-CaURA3-MX(t)-NUP188(t) 
including 500 bp of flanking sequence (DNA from GFY-3347) to create GFY-3435 to 3439

Table 1  (continued)
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