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Abstract 

Background Fungi are prolific producers of bioactive small molecules of pharmaceutical or agricultural interest. The 
secondary metabolism of higher fungi (Dikarya) has been well-investigated which led to > 39,000 described com-
pounds. However, natural product researchers scarcely drew attention to early-diverging fungi (Mucoro- and Zoo-
pagomycota) as they are considered to rarely produce secondary metabolites. Indeed, only 15 compounds have 
as yet been isolated from the entire phylum of the Zoopagomycota.

Results Here, we showcase eight species of the order Kickxellales (phylum Zoopagomycota) as potent producers 
of the indole-3-acetic acid (IAA)-derived compounds lindolins A and B. The compounds are produced both under lab-
oratory conditions and in the natural soil habitat suggesting a specialized ecological function. Indeed, lindolin A is a 
selective agent against plant-pathogenic oomycetes such as Phytophthora sp. Lindolin biosynthesis was reconsti-
tuted in vitro and relies on the activity of two enzymes of dissimilar evolutionary origin: Whilst the IAA–CoA ligase 
LinA has evolved from fungal 4-coumaryl-CoA synthetases, the subsequently acting IAA-CoA:anthranilate N-indole-
3-acetyltransferase LinB is a unique enzyme across all kingdoms of life.

Conclusions This is the first report on bioactive secondary metabolites in the subphylum Kickxellomycotina 
and the first evidence for a non-clustered, two-step biosynthetic route of secondary metabolites in early-diverging 
fungi. Thus, the generally accepted “gene cluster hypothesis” for natural products needs to be reconsidered for early 
diverging fungi.

Keywords Early-diverging fungi, Secondary metabolite, Indole alkaloid, Linderina pennispora, CoA ligase, Transferase, 
Indole-3-acetic acid

Introduction
Early diverging fungi (EDF) are a comparatively novel 
resource of natural products [1], whereas higher fungi 
(i.e. Asco- and Basidiomycota) are a well-established 
reservoir for natural compounds of pharmaceutical rel-
evance. In the post-genomic era an intensive reclassifi-
cation of EDF has begun and is still an on-going process 
[1–5]. Following current taxonomy, filamentous EDF 
divide into two major phyla [6]. The Mucoromycota com-
prise well-characterized genera such as Mucor, Rhizopus, 
Phycomyces and Mortierella encompassing plant symbi-
onts and potent producers of industrially relevant poly-
unsaturated fatty acids and β-carotene-derived pigments 
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[7, 8]. Some of these fungi produce nonribosomal pep-
tides (NRP) with surface-active, antibacterial or antima-
larial activities [9–13]. In contrast, the second phylum, 
the Zoopagomycota, is more nuanced as they include (i) 
obligatory pathogens of invertebrates or amoebae (Zoo-
pagomycotina), along with (ii) parasites and commensals 
of insects or amphibians (Entomophthoromycotina), and 
(iii) mycoparasites or saprotrophic species (Kickxellomy-
cotina) [2, 6, 14].

Saprotrophic kickxellomycetes are rarely isolated from 
nature, but preferably from rhizosphere, soil, humus, 
dung, and other organic material from dead plants and 
animals [2, 15]. Colonies usually grow slowly which is 
why they are quickly covered by other saprobe ascomy-
cetes prior to isolation [15]. With at least 167 isolated and 
ITS sequenced species, Coemansia is the major genus 
among the subphylum Kickxellomycotina [2]. In con-
trast, the rarely isolated kickxellomycetes include Linde-
rina species (with L. pennispora and L. macrosporum as 
the sole identified species) [16], Martensiomyces ptero-
sporus [17] and Kickxella alabastrina [18, 19]. However, 
although they are easily cultivable representatives of the 
Zoopagomycota, neither their metabolic potential nor 
their ecological impact have been investigated yet.

We addressed this profound knowledge gap. Here, we 
report that L. pennispora, M. pterosporus, and six Coe-
mansia species are producers of bioactive indole alka-
loids. The indole-3-acetic acid (IAA)-derived anthranilic 
amides, lindolin A and B, are secreted to the culture 
supernatant and during growth in soil organic matter 
suggesting an ecological relevance. Indeed, lindolins pos-
sess moderate, but selective activity against the plant-
pathogenic oomycete Phytophthora megasperma whilst 
other antimicrobial, phyto- or cytotoxic side activities 
were not detected. The combined activities of the IAA–
CoA ligase LinA and the unique IAA-CoA:anthranilate 
N-indole-3-acetyltransferase LinB catalyze in the NRP 
synthetase (NRPS)-independent amide formation of 
lindolins. The transferase LinB is a unique enzyme and 
highly conserved among all Kickxellales indicating lindo-
lin biosynthesis as a chemotaxonomic marker of this pro-
lific fungal order.

Results
The secondary metabolism of the fungal division 
Zoopagomycota is underexplored
Initially, we screened the LOTUS natural product data 
bank for secondary metabolite (SM) producers among 
the EDF [20]. As expected, higher fungi (Dikarya) have 
been intensively studied and dominated the database 
with approx. 40,000 fungal compounds by far (Fig.  1A). 
However, EDF are hardly known to produce SMs as 
merely 1% of the fungal metabolites (459 compounds) are 

EDF-derived. The most prominent producers are species 
from the Mucoromycota (442 compounds), whilst in sum 
solely 17 metabolites have been isolated from the three 
major phyla Zoopagomycota, Blastocladiomycota and 
Chytridiomycota altogether (Fig. 1B).

This contrasts the number of biosynthetic genes for 
polyketides, nonribosomal peptide synthetases (NRPS) 
and terpene cyclases that were identified in EDF through-
out the 1000 fungal genomes project and other studies 
[1, 26–28]. As Zoopagomycota are paraphyletic, unique 
biosynthetic enzymes and hence novel metabolites with 
unusual activities are expected [29]. Therefore, re-dis-
covery of known compounds—as frequently observed in 
the evolutionarily distantly related Dikarya species—is 
unlikely [30]. Only 15 natural products, i.e. 12 cyclopen-
tapeptides from Basidiobolus meristosporus [21–23], two 
azoxybenzene derivatives from Conidiobolus thromboides 
(syn. Entomophthora virulenta) [25] and the yellow pig-
ment (all trans)-2,4,6,8,10,12-tetradeca-1,14-hexenedial 
from Conidiobolus paulus [24] constitute the entire set of 
currently known Zoopagomycota compounds (Fig.  1B). 
Hence, Zoopagomycota are a promising, but underinves-
tigated source of novel natural products.

Production of indole‑3‑acetamides is specific for the order 
Kickxellales
First, we studied the secondary metabolome of L. pennis-
pora, a morphologically well-described, saprotrophic spe-
cies of the order Kickxellales (Additional file 1: Table S1) 
[31, 32]. We detected five UV-active compounds (1–5) 
(Fig. 1B), of which 4 and 5 with corresponding ion masses 
of m/z 293.0927 [M−H]− (calc. m/z 293.0931 [M−H]− 
for  C17H13N2O3

−) and m/z 309.0881 [M−H]− (calc. m/z 
309.0880 [M−H]− for  C17H13N2O4

−), respectively, domi-
nated in the culture filtrate extracts (Fig. 2A). Compound 
isolation by flash chromatography and HPLC as well as 
subsequent MS/MS analysis and NMR spectroscopy-
based structure elucidation revealed a new natural prod-
uct, lindolin A (4), as an amide of indole-3-acetic acid 
(IAA) and anthranilic acid (Additional files 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11: Figure S1–S9, Table S2). Lindolin B (5) was 
assigned as a derivative of 4 with a 5ʹ-hydroxy group at 
the anthranilic moiety (Additional files 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21: Figure S10–S18, Table  S3). Addition-
ally, we detected indole-3-acetic acid (IAA, 3) and minor 
amounts of the 3-related compounds indole lactic acid 
(ILA, 1) and indole ethanol (IOL, 2) in the extracts as 
determined by GC–MS/MS using a trimethylsilyl deri-
vatization procedure of commercially available or syn-
thesized reference standards (Fig. 1B, Additional file 22: 
Figure S19, Additional file  23: Figure S20, Additional 
file  24: Figure S21). Next, we screened the secondary 
metabolomes of more distantly related Kickxellales [2] 
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such as Martensiomyces pterosporus, and six Coeman-
sia species. Interestingly, all tested species synthesized 
4 and 5, at which M. pterosporus and Coemansia fur-
cata (syn. formosensis) [33] were the most prominent 
lindolin producers (Fig.  2 and Additional file  25: Figure 
S22). Although 4 and 5 were detectable under any culti-
vation condition, the 5ʹ-hydroxy derivative 5 was mainly 
produced on glucose-rich media (Fig.  2B). Additionally, 
we exemplarily detected 1 and 3 in M. pterosporus and 
1–3 in C. furcata by GC–MS (Additional file 22: Figure 
S19, Additional file  23: Figure S20, Additional file  24: 
Figure S21). This suggests, that (i) 4 and 5 are derived 
from 3 in all tested species and (ii) 1 and 2 are byprod-
ucts of the fungal 3 biosynthesis pathway. In contrast to 

the Kickxellales, species of the related kickxellomycete 
order Dimargaritales (Dimargaris bacillispora) neither 
produce 3 nor lindolins (4–5) (Additional file 25: Figure 
S22). Hence, the biosynthesis of lindolins is highly spe-
cific to the Kickxellales, but widely distributed within 
them. Since lindolins have never been described from 
other species, the compounds can be considered as spe-
cific chemotaxonomic markers for this particular fungal 
order.

Lindolins are produced in soil
Lindolins are preferably isolated from the supernatant of 
submerse cultures in L. pennispora, M. pterosporus and 
C. furcata, but are not detectable in mycelia, suggesting 
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that the compounds are actively secreted (Fig.  3A, B) 
Similarly, emerse cultures (agar plates) led to the produc-
tion of lindolins (Fig. 3C). However, cultivation in flasks 
and on plates are highly artificial growth conditions and 
do not resemble the natural habitat. Though, L. pen-
nispora, M. pterosporus and C. furcata were addition-
ally cultivated in potting soil in presence of d-glucose to 
boost the fungal growth (Fig.  3D). Again, 4 and 5 were 
detectable in at least two of the three species indicating 
that lindolins are produced in nature by Kickxellales and 
may have an impact in modulating their ecological niche.

Lindolins are anti‑oomycete compounds
We screened for a potential ecological function of lindo-
lins with various biological assays. Lindolins are neither 
antibacterial compounds nor cytotoxic against mamma-
lian cells (Additional file  26: Figure S23 and Additional 
file  27: Figure S24). As kickxellomycetes were isolated 
from grasslands [34] and fungal growth is positively cor-
related with a high carbon-to-nitrogen ratio [35], we 
studied the impact of lindolins on plant growth: Because 
lindolins share structural similarities to the major plant 
hormone auxin (indole-3-acetic acid, IAA, 3) [36], we 
specifically determined root growth inhibitory activity of 

the compounds using radish seedlings (Additional file 28: 
Figure S25). However, lindolins (4–5) neither induce root 
shortening as 3 nor impairs 3-mediated plant growth in 
general. Hence, at least on the tested seedlings, lindo-
lins do not show phytotoxic activities. However, during 
our initial screening we recognized an activity of lin-
dolins against the plant pathogenic oomycete Phytoph-
thora megasperma, while plant pathogenic fungi (e.g. 
Fusarium graminearum) were unaffected (Additional 
file  29: Figure S26). 4 showed moderate activity against 
oomycetes P. megasperma,  (MIC50 of 100 ± 11  µM) 
and—to a lower extend—Pythium macrosporum  (MIC50 
215 ± 61  µM), whilst 5 did not inhibit oomycete growth 
 (MIC50 > 500  µM), suggesting that the 5ʹ-hydroxylation 
dramatically impairs bioactivity (Additional file  30: Fig-
ure S27).

In silico reconstruction of the lindolin biosynthetic 
pathway
In EDF, peptide compounds are usually formed by NRPSs 
as demonstrated for hexapeptides [9, 37] and cyclopen-
tapeptides [38] from M. alpina and postulated for the 
cyclopentapeptides from B. meristosporus [21]. Com-
monly, small fungal amides such as fumarylalanine from 
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Fig. 2 Production of lindolin A and B in Kickxellales. Pictures of agar plates and extracted ion chromatograms (EIC) of metabolite crude extracts 
of Linderina pennispora, Martensiomyces pterosporus and Coemansia furcata grown in liquid meat medium (meat, A) or potato dextrose broth (PDB, 
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the pathogenic ascomycete Aspergillus fumigatus [39] or 
benzodiazephinedione from Neosartorya fischeri [40] are 
synthesized by condensation of two (amino) acids using a 
bimodular NRPS. However, the genomes of L. pennispora 
and related Kickxellales species lack genes for bimodu-
lar NRPSs [2]. Therefore, we postulated a coenzyme A 
(CoA)-mediated route for the production of lindolins 
(Fig. 4A).

The precursor IAA in L. pennispora might be pro-
duced by a common indole-3-pyruvic acid (IPA) path-
way reported for basidiomycetes [41] starting from 
l-tryptophan using three consecutive enzymes namely 
the l-tryptophan aminotransferase Tam1, the IPA 
decarboxy lase Ipd1, and the indole-3-acetaldehyde 
dehydrogenase Ald1. This hypothesis is supported by 
three observations: (i) the genomes of L. pennispora and 
related Kickxellales encode similar enzymes (Additional 
file  31: Table  S4), (ii) supplementation of the cultures 
with l-tryptophan boosts the production of 3 (and lin-
dolins) 19-fold (threefold) (Additional file 32: Figure S28), 
and (iii) the shunt products 1 and 2 of the highly unsta-
ble α-keto- and aldehyde intermediates are detectable in 
the culture broth of L. pennispora and other Kickxellales 
(Additional file 22: Figure S19, Additional file 23: Figure 
S20, Additional file 24: Figure S21). The production of 3 

(and partially 1 and 2) has been already demonstrated 
for numerous basidiomycetes [41–43], ascomycetes [44, 
45], but also for some EDF such as Mortierella antarctica 
[46], Podila verticillata [46] and Mucor sp. [47]. However, 
this is the first report on 3 production in Kickxellales.

The subsequent amidation of 3 with anthranilic acid 
(AA) requires two separate steps: (i) an activation of 
the chemically unreactive carboxylic acid of 3 by ade-
nylation and subsequent thioesterification by a ligase 
and (ii) the final amidation of IAA with AA by a trans-
ferase (Fig. 4A). A similar mechanism has been shown 
for the avenanthramide biosynthesis in oat (Avena 
sativa) [48]. Hereby, the 4-coumarate–CoA ligase 4CL 
activates 4-coumaric acid to 4-coumaryl-CoA, which in 
turn is amidated with 5-hydroxyanthranilic acid by the  
hydroxyc innamoyl-CoA:5-hydroxyanthrani late 
N-hydroxycinnamoyl transferase HHT1 to yield the 
final product avenanthramide A (Fig. 4B). We searched 
the genome for probable candidates using the 4CL 
genes from A. sativa and Arabidopsis thaliana as que-
ries and identified 31 4CL-homologous genes, among 
them linA (DL89DRAFT_225601; e value 1 ×  10–101) 
(Table 1). In contrast, when we used the A. sativa HHT1 
as query, 21 hits with e values of only > 1 ×  10–15 were 
obtained. However, when we compared the sequences 
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Fig. 3 Secretion of lindolins under natural conditions. Linderina pennispora, Martensiomyces pterosporus and Coemansia furcata were submersely 
grown in liquid meat medium under agitation. Crude extracts of culture supernatants (A) and mycelia (B) were chromatographed. In addition, 
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served as controls (E). Pictures of the soil cultures are shown above the chromatograms (Aerial mycelium is mainly visible for L. pennispora and C. 
furcata. Minor white spots in the control plates are part of the soil substrate). Chromatograms were recorded by UHPLC-MS and overlaid extracted 
ion chromatograms were shown for m/z 293 [M−H]− and m/z 309 [M−H]− for 4 (red trace) and 5 (blue trace), respectively. Non-inoculated media 
or soil served as negative controls. Asterisks indicate an unrelated compound that is also present in the soil negative control. Note, that lindolin A (4) 
is absent in the mycelium, but is the predominant secreted compound in the supernatant, agar plates and soil
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of the HHT candidates from L. pennispora with those 
from the related lindolin producer M. pterosporus, two 
HHT-like genes [DL89DRAFT_290543 (linB) from 
L. pennispora and GQ54DRAFT_300561 from M. 

pterosporus] showed the highest similarity (76% pair-
wise identity) and lowest bit-score (e value 0) (Table 1). 
The most likely ligase gene linA and the most probable 
hht-like candidate gene linB from L. pennispora were 
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Table 1 Heterologously expressed genes from Linderina pennispora and biochemical function of the corresponding enzymes

Gene Locus tag Gene size (bp) (# of 
introns)

Protein size 
(aa)

Function Accession number

linA DL89DRAFT_225601 1841 (2) 553 IAA–CoA ligase (indole-3-acetyl-CoA 
synthetase)

OR047549

linB DL89DRAFT_290543 1434 (0) 477 indole-3-acetyl-CoA:anthranilate
N-indole-3-acetyltransferase
(lindolin synthase)

OR047550
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chosen for expressional profiling. Interestingly, both 
genes are co-expressed under lindolin producing condi-
tions (Fig. 5A).

LinA is an indole‑3‑acetate–CoA ligase
The ligase gene linA was heterologously expressed in 
Escherichia coli, and the enzyme was purified as a C-ter-
minal  His6-tagged soluble fusion protein. We investi-
gated the substrate specificity of LinA by measuring the 
released AMP by monitoring the depletion of NADH 
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Fig. 5 Expressional profiling of lin genes and enzyme activities of the ligase LinA and the transferase LinB. A Expressional profiling of linA and linB 
in L. pennispora grown in meat and PDB medium. The expression was referenced to growth in Aspergillus minimal medium and normalized 
against the housekeeping gene encoding the glyceraldehyde-3-phosphate dehydrogenase (gpdA). Both genes were co-expressed. B Coupled 
multi-enzyme assay to determine the substrate specificity of LinA. C Substrate profiling of LinA. All substrates were used at a final concentration 
of 1 mM. Water served as negative control. The assay was performed as described [49]. D LinB activity assay. LinB was incubated with IAA-CoA 
and either AA to produce 4 or HAA to produce 5. Overlaid extracted ion chromatograms (EIC) were shown for 4 (m/z 293 [M−H]−, in red) and 5 (m/z 
309 [M−H]−), in blue), respectively. Assays without enzyme or without substrates were included as negative controls. Authentic standards of 4 and 5 
served as positive controls
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with a well-established enzyme-coupled assay [49] 
(Fig. 5B, Additional file 33: Figure S29). LinA preferably 
uses IAA (3) as substrate followed by 2-ketoisovaleric 
acid, acetate and 2-keto-3-methylvaleric acid (Fig.  5C). 
The enzyme is highly specific for 3 as it does not con-
vert chemically similar aryl acids such as 4-coumaric 
acid, caffeic acid or the IAA-analog indole-3-butyric acid 
(IBA). We determined optimal conditions at pH = 7.5 
and ϑ = 35 °C (Additional file 34: Figure S30). Hence, we 
established LinA as an IAA–CoA ligase.

LinB is an indole‑3‑acetyl‑CoA:anthranilate 
N‑indole‑3‑acetyltransferase
The transferase LinB was similarly purified from recom-
binant E. coli as an N-terminally  His6-tagged pro-
tein  (Additional file  33: Figure S29). To characterize 

LinB, its potential substrate IAA-CoA was synthesized 
by a reported protocol [50]. When LinB and IAA-CoA 
were incubated with the acceptor substrates anthranilic 
acid (AA) or 5-hydroxyanthranilic acid (HAA), forma-
tion of 4 or 5 was observed (Fig.  5D). Hence, LinB is 
sufficient for the production of either lindolin. Moreo-
ver, 5 is synthesized from HAA rather than by oxida-
tion of 4. However, when both anthranilic substrates 
are equimolarly provided, AA is clearly preferred over 
HAA (Additional file  35: Figure S31). We determined a 
pH optimum (pH = 7.8) and a temperature optimum 
(ϑ = 30 °C) similar to that of LinA (Additional file 36: Fig-
ure S32) and assigned LinB as an IAA-CoA:anthranilate 
N-indole-3-acetyltransferase.
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Fig. 6 Biocatalytic lindolin production in vitro. A Schematic representation of the two-step biosynthesis to lindolins. The reaction was initiated 
by addition of the substrate anthranilic acid (AA) (B and C) or 5-hydroxyanthranilic acid (HAA) (D) and incubated at 25 °C for 2 h. The amount 
of 4 (B), IAA-CoA (C) and 5 (D) was chromatographically quantified. Representative EICs are given for 4, IAA-CoA and 5 at m/z 293 [M−H]−, m/z 
923 [M−H]−, and m/z 309 [M−H]−. Note, that the CoA ester leads to slightly broadened peaks as described elsewhere [51]. E Enzyme-coupled 
determination of LinA activity in presence and absence of LinB
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LinA and LinB are sufficient to produce lindolins in vitro
We tested the production of lindolins in a one-pot-
reaction (Fig.  6A). Indeed, using both enzymes (LinA 
and LinB), 3, ATP, CoA and either AA or HAA, the 
production of 4 or 5, respectively, was achieved in vitro 
(Fig. 6B–D). The reaction was strictly dependent on the 
substrates (IAA, anthranilates), CoA, ATP and both 
enzymes. A spontaneous amidation was recognized in 
absence of LinB yielding negligible amounts of lindolins 
(1%), suggesting that the highly unstable IAA-CoA thi-
oester quenched fast. However, the reaction was highly 
accelerated by LinB. In addition, an accumulation of 
IAA-CoA in absence of LinB or its anthranilate sub-
strates was observed (Fig. 6C). In contrast, the interme-
diate IAA-CoA was scarcely detectable in the coupled 
enzyme reaction, indicating that LinB converts IAA-CoA 
as soon as it is produced by LinA. Indeed, LinA’s activ-
ity is boosted twofold in the presence of LinB most likely 
by metabolic channeling of IAA-CoA to LinB (Fig. 6E). In 
sum, the ligase LinA and the transferase LinB act in con-
cert to produce both lindolins, 4 and 5.

The lindolin pathway is of split evolutionary origin
Although linA and linB are coexpressed, they are not 
encoded at the same genomic locus neither in L. penni-
spora nor in any other analyzed lindolin producer (Addi-
tional file 37: Figure S33, Additional file 38: Figure S34). 
We hence addressed the potential evolutionary origin 
of both biosynthetic genes. Phylogenetically, the IAA–
CoA ligase LinA from L. pennispora clearly clusters with 
other related enzymes within the order Kickxellales and 
other orders of Kickxellomycotina such as Harpellales 
(e value 6 ×  10–131; pairwise identity 40.04%) and Spiro-
mycetales (1 ×  10–124; 43.43%) (Table  2, Fig.  7, Addi-
tional file  39: Table  S8). The enzyme may have evolved 
from fungal 4-coumaric acid–CoA or ferulic acid–CoA 
ligases [52] and is only distantly related to well-charac-
terized 4-coumaric acid–CoA ligases (4CL) from plants 
such as mouse-ear cress (A. thaliana) [53], rice (Oryza 
sativa) [54], California poplar (Populus trichocarpa) 
[55], spreading earthmoss (Physcomitrella patens) [56] 
or oat (A. sativa) [48]. Moreover, LinA is unrelated to the 
well-characterized IAA–CoA ligase IaaB from the IAA-
degrading bacterium Aromatoleum aromaticum [57].

In contrast, LinB homologs are exclusively found 
in the genera of Kickxellales such as Martensiomyces 
spp. (e value 0; pairwise identity 61.41%), Coeman-
sia spp. (0–5 ×  10–152; 49.04–63.38%), Kickxella spp. 
(9 ×  10–175; 51.15%), and Dipsacomyces spp. (8 ×  10–172; 
56.86%) (Table  2, Additional file  40: Table  S9). LinB 
is highly specific for this fungal order as there are no 
closer orthologs present in related Kickxellomycetes, 
other fungal orders or any eukaryotic or prokaryotic 

species (> 3 ×  10–18; < 28.07%) (Table  2). Hence, linB 
must have evolved in the Kickxellales ancestor cell 
prior to the separation from the other orders and was 
evolutionary conserved in all descending species. A 
sequence similarity network (SSN) analysis based 
on the LinB homologs in Kickxellales and the fairly 
related proteins from other kingdoms clearly dem-
onstrates the uniqueness of the LinB enzyme class 
among all kingdoms of life (Fig.  8, Additional file  41: 
Figure S35, Additional file  42: Figure S36, Additional 
file 43: Figure S37). Only at a very low alignment score 
threshold of 26 (at which enzymes of bacteria, plants, 
Oomycota and Glomeromycotina collapse in a sin-
gle cluster) a weak correlation between LinB proteins 
and predicted proteins from Glomeromycotina and 
plants is detectable. This might point at shikimate-
O-hydroxycinnamoyl transferases of Glomeromycota 
or plants as a potential origin of LinB [58]. Indeed, the 
intensive horizontal gene transfer (HGT) of the shi-
kimate pathway between fungi, plants and prokary-
otes is an important driver in eukaryotic genome 
evolution [59] and HGT has been reported from 
many EDF [60–62]. From a natural product chemist’s  
angle, LinB is an evolutionary unique transferase and 
comprises a non-canonical type of amide-bond forming 
enzyme in fungal secondary metabolism.

Discussion
The present work showcases the yet underestimated 
fungal subphylum Zoopagomycota as potent produc-
ers of bioactive natural compounds. Several species of 
the fungal order Kickxellales produce the IAA-derived 
indole amide anthranilates lindolin A and B, which pos-
sess anti-oomycete activity. The unusual amidation is 
NRPS-independent, but coenzyme A-mediated and 
relies on the activity of two enzymes, the ligase LinA 
and the unique transferase LinB.

The production of IAA (3) and its derivatives such 
as tryptamine (TAM), indole-3-acetamide (IAM), ILA 
(1), indole-3-pyruvic acid (IPyA), IOL (2), and indole-
3-acetonitrile (IAN) is a widely distributed feature of 
plant-interacting fungi, especially for ectomycorrhizal 
basidiomycetes such as the “skin mushroom” Astraeus 
odoratus [42], the alder bolete Gyrodon lividus [42], and 
the scaly knight (fuzztop) Tricholoma vaccinum [41]. 
However, 3 amides have not been described for fungi 
yet. 3 amide conjugates were primarily thought of as 
storage form of auxin in plants [63], but were later rec-
ognized to regulate seedling development, 3 homeo-
stasis and abscission [64–66]. Our study did not verify 
auxinic or phytotoxic effects of 3-derived lindolins, but 
identified them as anti-oomycetic agents. Oomycetes 
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are mainly filamentous, heterotrophic species closely 
related to diatoms and brown algae [67] and include 
important phytopathogens such as the aggressive cos-
mopolitan necrotroph Pythium spp. and the host-specific 
hemibiotroph Phytophthora spp. [68]. Both cause blights 
in agricultural important hosts such as potato (Solanum 
tuberosum), tomato (Solanum lycopersicum), or soybean 
(Glycine max) [68]. Oomycetes are hardly susceptible for 
many antifungal drugs (especially azoles) as they possess 
a plant-like cell wall and membrane composition [69]. 
Effective concentrations of anti-oomycete drugs are usu-
ally higher than used for antibiotics or antimycotics. For 
example, the anti-oomycete compound 2E,4E-decadie-
noic acid (DDA) identified from Trichoderma asperel-
lum [70] is active against Phytophthora spp. at 594  µM 
(100  µg   mL−1). However, synthetic antifungals such as 
azoxystrobin (5  µM; 2  µg   mL−1) and metlaxyl (54  µM; 
15  µg   mL−1) [71] or oocydin isolated from Serratia 
marcescens (63 nM; 0.03 µg  mL−1) [72] are active against 
oomycetes at much lower concentrations. Despite the 

high  MIC50 of 4 (100 µM; 34 µg   mL−1), inhibitory titers 
are readily reached by L. pennispora due to high produc-
tion rates of up to 500 µM.

Anthranilate moieties are common in bacterial  
benzoxazole antibiotics including nataxazole [73], car-
boxamycin [74], calcimycin [75] and A33853 [76] as 
well as in many fungal nonribosomal peptides including 
acetylaszonalenin, fumiquinazoline A and asperlicin [77]. 
Benzoxazole antibiotics show diverse biological proper-
ties including anticancer and antibacterial activities [78]. 
Anthranilate is commonly derived from l-tryptophan 
degradation, whilst 5-hydroxyanthanilate might be pro-
duced by an anthranilate-5-hydroxylase during anthra-
nilate catabolism [79–81]. Recently, a flavin-dependent 
monooxygenase Aha6 (UMM61384.1) was predicted to 
convert anthranilate into its 5-hydroxy derivative during 
tasikamide biosynthesis in Streptomyces tasikensis [82]. 
However, none of the lindolin producers encodes a aha6 
homolog and 5-hydroxyanthranilate might be produced 

Table 2 Blast analyses of the closest relatives of the ligase LinA and the transferase LinB

phylum subphylum order parameters of most likely candidates for
LinA LinB

e value pairwise 
iden�ty

e value pairwise 
iden�ty

fungi Dikarya Basidiomycota 2 × 10-126 38.32 % 2 × 10-8 24.38 %
Ascomycota 7 × 10-131 39.38 % 2 × 10-16 21.44 %

EDF Mucoromycota Mucoromyco�na Mucorales 8 × 10-130 39.20 % 4 × 10-5 22.03 %
Umbelopsidales 8 × 10-125 39.25 % no hits

Mor�erellomyco�na 2 × 10-126 38.47 % 8 × 10-3 28.07 %
Glomeromyco�na 6 × 10-141 41.28 % 7 × 10-10 21.09 %

Zoopagomycota Kickxellomyco�na Kickxellales 0 100 % 0 100%
Dimargaritales 1 × 10-141 38.91 % 7 × 10-6 21.96 %
Harpellales 6 × 10-133 40.04 % no hits no hits
Asellariales no hits no hits no hits no hits
Barbatosporales no hits no hits no hits no hits
Spiromyceteles 1 × 10-124 43.43 % no hits no hits
Orphellales no hits no hits no hits no hits
Ramicandelaberales 3 × 10-111 39.87 % 4 × 10-15 20.75 %

Entomophthoromyco�na Entomophthorales 3 × 10-118 36.92 % 4 × 10-6 22.43 %
Basidiobolales 3 × 10-138 39.96 % 7 × 10-8 24.82 %

Zoopagomyco�na Zoopagales 2 × 10-137 40.95 % 8 × 10-14 23.20 %
Blastocladiomycota 4 × 10-96 35.72 % no hits no hits
Chytridiomycota 2 × 10-129 40.04 % 2 × 10-6 22.19 %

pro�sta algae 6 × 10-52 27.93 % no hits no hits
oomycetes 6 × 10-104 36.38 % 8 × 10-9 23.74 %

prokaryotes bacteria 3 × 10-125 39.16 % 2 × 10-12 22.85 %
archaea 1 × 10-103 37.98 % 9 × 10-8 22.41 %

planta 3 × 10-118 39.01 % 3 × 10-18 25.74 %
nematoda 3 × 10-100 37.79 % no hits no hits
vertebrata 1 × 10-80 34.34 % no hits no hits

E values of the most likely hits are color-coded (no hits, black; >  10−20, red;  10−20–10−100, yellow; <  10−100, green). In addition, pairwise identities of the most likely hits 
are color-coded (no hits, black; < 35% red, 35–40% yellow, > 40% green)

Fig. 7 Phylogenetic relationship of LinA and related enzymes in other fungal orders and domains of life. For each phylum or fungal order, ten 
closest relatives were obtained by BLAST searching the NCBI database. The sequences were aligned using MAFFT and the tree was generated 
using the maximum-likelihood method of the IQ-tree webserver. All sequences are listed in Additional file 39: Table S8. The tree summarizes 1000 
replicates. Plant aryl-CoA synthetases served as outgroup. Bootstrap support values are given for each node (in percent). Asterisks (*) indicate 
biochemically or genetically verified aryl-CoA ligases. The red arrow highlights the characterized L. pennispora LinA

(See figure on next page.)
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by alternative shikimate anabolic or l-tryptophan cata-
bolic pathways [83].

The final step in lindolin biosynthesis is the LinA/LinB-
catalyzed condensation of 3 with anthranilate. ATP-
dependent amide bond formation of small molecules 
is widely distributed in nature and is mainly catalyzed 

by ribosomes [84], NRPSs [85] and CoA-dependent 
acyl transfer systems especially during siderophore 
metabolism [86] and histone modification [87]. In the 
microbial secondary metabolism, the thiotemplated 
amidation usually requires the tethering of the donor 
amino acid to a thiolated carrier protein (CP) [88]. CPs 

Fig. 8 Sequence similarity networks (SSN) for LinB. A LinB homologs are depicted in a protein sequence similarity network with an alignment score 
threshold of 60 (correlating to 35% sequence identity) resulting in a network with distinctly separated clusters corresponding to the different phyla. 
B LinB homologs are depicted in a protein sequence similarity network with an alignment score threshold of 26 (correlating to 25% sequence 
identity) and showing the sole, but weak correlation between the nodes of LinB sequences from Kickxellales to nodes of other phyla, especially 
to Glomeromycotina and plants. Each node represents a member of up to 100 closest LinB orthologs in each phylum or fungal order according 
to the BLAST search (see Additional file 40: Table S9). Nodes are highlighted in color according to the taxonomic classification. Representative 
examples including LinB from Linderina pennispora and biochemically verified LinB-like transferases from plants (Avena sativa, Arabidopsis thaliana 
and Dianthus caryophyllus) are indicated in darker color
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are either embedded in an NRPS as so-called thiolation 
(T) domains as exemplified in the fumaryl-l-alanine 
biosynthesis [39] (Fig.  9A) or act as small, stand-alone 
CP domain proteins as shown for the nataxazole bio-
synthesis [73] (Fig. 9B). Kickxellomycetes follow a third, 
CP-independent route for thiotemplated peptide for-
mation by using a plant-like CoA-mediated catalysis 
mechanism (Fig.  9C). Interestingly, isolated adenylation 
(A) domains of NRPSs can close peptide bonds in vitro 
as well [89–91]. Similar to the native LinA/LinB-coupled 
system, thioester-mediated biocatalytic syntheses of  
dozens of different dipeptides have been demonstrated 
in a one-pot-reaction using two promiscuous enzymes, 
the A domain of the carboxylic acid reductase CAR sr 
coupled to the plant-derived tyramine-N-hydroxycin-
namoyl acyltransferase CaAT [91]. Using this approach, 
even post-translational modifications of proteins can be 

achieved. This result highlights the CoA-mediated amide 
formation as a powerful strategy to label or click-func-
tionalize proteins.

The non-canonical biosynthesis of lindolins show 
a remarkable similarity to the structurally related 
5-hydroxyanthranilate amides avenanthramides A–C 
(formerly known as avenalumins) from oat [48, 92, 93]. 
However, the biosynthetic genes are only marginally 
related and may have independently evolved. Avenanthr-
amides were initially discovered as defensive phytoalexins 
against the crown rust Puccinia coronata [94] but were 
later reidentified in oat grains [95]. Avenanthramides 
inhibit atherosclerosis and asthma by suppression of 
both inflammatory cytokines and adhesion molecules in 
endothelial cells [96]. Since 1982, their structural deriva-
tive tranilast (brand name: rizaben) has been marketed 
in Asia to treat allergic disorders [97] and is additionally 
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a proven chemotherapeutic drug in several pre-clinical 
studies [98]. In contrast, lindolins do not show antiprolif-
erative effects on mammalian cell lines. However, a more 
profound investigation of their function during inflam-
mation might be an objective of future works.

Tremendous effort has been conducted by comparative 
genomics of hundreds of EDF genomes to identify novel 
biosynthetic gene clusters [1, 2, 27]. Using this promising 
approach, potential SM producers including the genera 
Mortierella [12, 37], Mucor [99], Phycomyces [100], and 
Basidiobolus [21, 22] were identified. However, previous 
works mainly relied on the identification of well-known 
SM key enzymes (e.g. NRPSs, polyketide synthases, ter-
pene synthases and hybrids thereof ) encoded within a 
genetic cluster, but neglected the identification of non-
canonical biosynthesis pathways or non-clustered genes. 
Both features apply to the lindolin biosynthesis in Kick-
xellales. With a few exceptions, cooperatively acting SM 
genes are usually co-expressed and co-located in biosyn-
thetic gene clusters in both Ascomycota [101, 102] and 
Basidiomycota [103–105]. Opposingly, lindolin biosyn-
thetic genes linA and linB are co-expressed, but not clus-
tered. Similarly, the production of the β-carotene-derived 
Mucorales mating hormone trisporic acid requires sev-
eral non-clustered enzymes [106–108] suggesting that 
SM biosynthetic genes might be not clustered in EDF in 
general—a phenomenon that is widely known in plant 
secondary metabolism [109]. Pharmacologically impor-
tant non-canonical pathways include the biosynthesis of 
the aforementioned anti-inflammatory avenanthramides 
[48], the neuroactive drug psilocybin [103], and the fly 
agaric toxin ibotenic acid [104], and is now expanded by 
the anti-oomycete lindolins from the yet underestimated 
fungal order Kickxellales.

Our study shows that the current strategies to identify 
biosynthetic routes in EDF need to be re-evaluated and 
the archetypical “gene cluster concept” might be recon-
sidered for EDF. Moreover, the non-clustered lindolin 
biosynthesis revealed that the metabolic potential of EDF 
is manifolded and much more diverse than previously 
predicted by genomic approaches.

Conclusion
Kickxellomycetes are a novel promising source of bioac-
tive natural products including indole alkaloids. The non-
canonical, NRPS-independent biosynthesis of the indole 
alkaloids lindolin A and B relies on two separate enzymes 
that are not encoded in a biosynthetic gene cluster. This 
may affect future genetic studies on secondary metabo-
lism in EDF in general. Moreover, the metabolic potential 
of EDF is larger than previously recognized pointing to 
an underestimated reservoir for natural compounds.

Methods
Organisms and culture conditions
All fungal EDF strains were initially verified by ITS 
sequencing [10] (Additional file  1: Table  S1) and were 
routinely cultivated on MEP agar plates [20  g  L−1 malt 
extract (Carl Roth), 3  g  L−1 soy peptone (Gibco), 20  g 
 L−1 agar, pH 5.6] for 7–14 days at 25 °C (Coemansia spp.) 
or 30  °C (Linderina sp. and Martensiomyces sp.). The 
mycoparasite Dimargaris bacillispora CBS218.59 was 
grown on its fungal host Cokeromyces recurvatus on V8 
agar [100  mL  L−1 V8 juice (Campbell Soup), 0.75  g  L−1 
 CaCO3, 15 g  L−1 agar] at 25 °C for 14 days. To induce lin-
dolin biosynthesis, 100 mL meat medium [10 g  L−1 meat 
extract (Carl Roth), 10  g  L−1 tryptone (Carl Roth), 5  g 
 L−1 NaCl], MEP medium, or PDB [26.5 g  L−1 potato dex-
trose broth (Carl Roth)] were inoculated with three agar 
blocks (9  mm2) of the respective strains and incubated at 
160 rpm at 25 °C or 30 °C for 3 to 21 days. Cultures were 
additionally grown on meat medium, MEP and PDB agar 
plates containing 20 g  L−1 agar for 7–28 days at 25 °C or 
30  °C. To show l-tryptophan-dependent production of 
3–5, L. pennispora was cultivated on Aspergillus mini-
mal medium (AMM) [110] without d-glucose but with 
1% (w/v) casamino acids (Difco) and with or without the 
supplementation of 5 mM l-tryptophan, for three days. 
L. pennispora, M. pterosporus and C. furcata were culti-
vated emersly on 20 g autoclaved potting soil (“Floralie” 
from Floraself ) supplemented with or without 1% (w/w) 
d-glucose for ten days. Oomycete strains (P. megasperma 
and P. macrosporum) were verified by ITS sequencing 
[10] (Additional file 1: Table S1) and were grown on PDB 
agar at 25  °C for up to seven days. F. graminearum was 
cultivated on MEP agar at 30  °C for 4  days. Escherichia 
coli XL1 blue was used for plasmid propagation and E. 
coli SoluBL21 (for LinA) and BL21 (for LinB) were used 
for protein production (Additional file 1: Table S1). E. coli 
was cultivated at 37  °C on LB agar plates supplemented 
with 100 µg  mL−1 carbenicillin (Roth) or 50 µg  mL−1 kan-
amycin (Roth), if required.

Chromatographic analysis of metabolite extracts
Extraction of metabolites from culture filtrate, mycelium, 
agar plates and soil
Culture filtrates were separated from the mycelium using 
Miracloth (Merck). The mycelium was rinsed with water, 
lyophilized to dryness, weighed to determine the fun-
gal dry biomass and extracted with 5  mL methanol per 
100  mg dry fungal biomass. The culture filtrates were 
adjusted to pH 6 by addition of 3 M HCl or 3 M NaOH 
prior to extraction with 100 mL ethyl acetate. Cultivated 
agar plates (25  mL) were sliced in 5 × 5  mm pieces and 
extracted overnight with 25 mL ethyl acetate. 20 g of soil 
samples were extracted with 40  mL of ethyl acetate. In 
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all extraction procedures, uninoculated liquid medium, 
agar or soil served as negative control. The organic phase 
was collected and evaporated to dryness using a rotary 
evaporator. The residue was dissolved in 2  mL metha-
nol, ultrasonicated for 1 min, and centrifuged to remove 
contaminating particles (20,000×g, 10 min). 5 µL thereof 
were used for GC–MS and UHPLC measurements 
(methods 1 and 2, Additional file 44: Table S5).

GC–MS analysis
The compounds ILA (1), IOL (2) and IAA (3) were 
determined by GC–MS on a Trace 1310 gas chromato-
graph (Thermo Fisher Scientific) coupled with a TSQ 
9000 electron impact (EI)-triple quadrupole mass spec-
trometer using method 1 (Additional file  44: Table  S5). 
A 4  mm SSL GC inlet glass liner with glass wool (P/N 
453A1305) and a BPX5 capillary column (30 m, 0.25 mm 
inner diameter, 0.25  μm film) from Trajan (SGE) was 
used. The column was operated with helium carrier gas 
(1.5 mL  min−1) and split injection (split ratio 1:10). Total 
ion current (TIC) values were recorded in the mass range 
of 45–500 amu, with a scan time of 0.2 s. and a MS delay 
of 4 min. As 1 and 3 were too hydrophilic for optimal GC 
runs, silylation of 1–3 was conducted with N-methyl-
N-(trimethylsilyl) trifluoroacetamide (MSTFA) prior to 
GC analysis: Methanolic fungal extracts were dried in 
vacuo and resuspended in 150 µL MSTFA. Samples were 
mixed for 15 s, ultrasonicated for 1 min and centrifuged. 
A volume of 1  µL of the supernatant was injected. The 
National Institute of Standards and Technology (NIST) 
Mass Spectra Search Program version 2.4 was used for 
comparison of the EI-MS spectra.

UHPLC‑MS analysis
Compounds 3, 4 and 5 as well as IAA-CoA were ana-
lyzed on an Agilent 1290 Infinity II UHPLC instrument, 
coupled to a 6130 single quadrupole mass spectrometer 
using method 2 (Additional file 44: Table S5). Metabolite 
quantification was carried out using a regression curve 
based on the injection of gradual binary dilutions of 3, 4 
and 5 from 3 to 800 µM.

Purification and structure elucidation of lindolin A (4) 
and B (5)
L. pennispora was grown in an upscaled culture of 12 L 
AMM with 1% (w/v) casamino acids and 5 mM l-trypto-
phan with orbital shaking at 160 rpm at 30 °C for 10 days. 
Metabolites were extracted from the supernatant as 
described above. The residue was dissolved in 130  mL 
dichloromethane and reduced to 40  mL with a rotary 
evaporator. Purification of 4 and 5 was conducted using 
a Büchi C-810 Flash Chromatograph and an Agilent 
1200 Infinity HPLC system equipped with a diode array 

detector (DAD). The extract was subjected to a normal 
phase column (Silica gel, 40  g) on the flash chromato-
graph using method 3 (Additional file 44: Table S5). Four 
fractions (fraction I–IV) were obtained, of which frac-
tions II and III contained 5 and 4, respectively.

Fraction III (containing 4) was evaporated to dry-
ness and dissolved in 3 mL methanol. In four individual 
runs, 750 µL thereof were flash-chromatographed using 
a reverse phase column (C18, 12  g) running method 4 
(Additional file 44: Table S5). The obtained fraction with 
the major peak of 4 was again dried by lyophilization and 
dissolved in 2  mL methanol. In several runs, aliquots 
of 10  µL each were subjected to semipreparative HPLC 
purification using method 5 (Additional file 44: Table S5). 
A total of 40  mg of pure 4 were obtained. Fraction II 
(containing 5) was evaporated to dryness and dissolved 
in 3.5  mL methanol. Purification was accomplished 
on a reverse phase column (12  g, C18) using method 6 
(Additional file  44: Table  S5) followed by semiprepara-
tive HPLC using method 7 (Additional file 44: Table S5). 
A total of 14  mg of pure 5 were obtained. MS/MS  
measurements were performed using a Q Exactive Plus 
mass spectrometer (Thermo Scientific). NMR spec-
tra were recorded on a Bruker Avance III 600  MHz  
spectrometer at 300 K. DMSO-d6 served as solvent and 
internal standard (δH = 2.50 ppm and δC = 39.52 ppm).

Synthesis of chemical standards
Indole-3-ethanol (IOL, 2) was synthesized by reduc-
tion of IAA (3) with lithium aluminium hydride in THF 
according to Du et al. [111]. Indole-3-acetyl coenzyme A 
(IAA-CoA) was synthesized by thioesterification of IAA 
(3) with coenzyme A trilithium salt (Merck) according to 
Pourmasoumi et al. [50].

Biological activities
Antimicrobial activities were initially determined at a 
concentration of 1 mg  mL−1 methanol of 4 and 5 against 
the following strains according to a well-established 
protocol [38]: Bacillus subtilis ATCC6633, Staphylo-
coccus aureus SG511, Escherichia coli DSM498, Pseu-
domonas aeruginosa K799/61, Mycobacterium vaccae 
IMET10670, Sporidiobolus salmonicolor SBUG0549, 
Candida albicans JMRC:STI:50163 and Penicillium 
notatum JMRC:STI:50164. Anti-oomycete activities were 
determined by cultivation of Phytophthora megasperma 
CBS 687.79 and Pythium macrosporum CBS 575.80 on 
PDB agar plates in presence of serial binary dilutions 
of lindolin A (4) and B (5) (7.8–500  µM) for 4–6  days  
measuring the colony diameter. Pure solvent (methanol) 
or serial dilutions of hygromycin B (10–400 µM) served 
as negative and positive controls, respectively. Antiprolif-
erative or cytotoxic activities were determined for human 
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umbilical vein endothelial cells (HUVEC) or cervical can-
cer cells (HeLa), respectively, as described [10]. Growth-
inhibitory and auxin-inhibitory activity of 4 and 5 was 
calculated on radish seedlings (Kiepenkerl) according 
to a published protocol [112, 113]. In brief, radish seeds 
were cultivated in Hoagland medium agar [112] supple-
mented with 1 and 10 µM of 4 and 5 (growth-inhibitory 
effect). Solvent (methanol) and 3 (1  µM) were negative 
and positive controls, respectively. A competitive assay 
using 1 µM 3 and 1 µM 4 or 5 was carried out similarly 
(auxin-inhibitory effect). Root and hypocotyl growth 
were measured daily for a period of 5 days.

Isolation of nucleic acids and expression analysis
Fungal mycelium from 36 h cultures in AMM, PDB and 
meat medium was lysed with glass beads (1–5 mm) in a 
FastPrep Homogenizer (MP Bio) for 2 min at 4.5 m  s−1. 
Genomic DNA was isolated as described [38]. RNA was 
isolated with the SV Total RNA Isolation System (Pro-
mega) using the manufacturer’s protocol. RNA (1  µg) 
was DNase-treated (Baseline-ZERO, Lucigen) and was 
reversely transcribed into cDNA by the RevertAid RT 
kit (Thermo) using anchored oligo-(dT)20 oligonu-
celotides. Expression analysis was performed at the 
AnalytikJena  qTower3 using the qPCR Mix EvaGreen 
(Bio&SELL) and oligonucleotides with a minimum 
primer efficiency of 95% (Additional file  45: Table  S6). 
After an initial denaturation at 95  °C for 15  min, 40 
cycles of amplification were run (95 °C, 15 s; 60 °C, 20 s; 
72  °C, 20  s). The housekeeping reference genes encod-
ing actin (actA, DL89DRAFT_257372), the TEF tran-
scription factor (tefA, DL89DRAFT_11075) and the 
glyceraldehyde-3-phosphate dehydrogenase (gpdA, 
DL89DRAFT_277503) served as internal standards. 
Gene expression levels were determined as described by 
Pfaffl [114].

Enzymatic assays
Heterologous protein production
linA and linB were amplified from L. pennispora cDNA 
using Phusion High-Fidelity DNA polymerase (NEB) and 
the oligonucleotides listed in Additional file 45: Table S6. 
The fragments were ligated into the pET28a expres-
sion vector using the restriction sites NcoI/HindIII and 
NheI/EcoRI (Additional file  46: Table  S7), respectively. 
Expression was conducted in Escherichia coli SoluBL21 
(linA) and BL21 (linB), cultivated in 400 mL LB medium 
supplemented with 50 µg  mL−1 kanamycin at 37 °C until 
an optical density of 0.6 was reached. Then, expression 
was initiated by adding 1 mM IPTG. After another 16 h 
of incubation at 16 °C, cells were harvested by centrifuga-
tion (4000×g, 25 min) and disrupted in 5 mL lysis buffer 

(50 mM sodium phosphate, 300 mM NaCl, 10 mM imi-
dazole, pH 8) by ultrasonication. The enzymes were puri-
fied using the Protino  Ni2+ NTA Agarose (Macharey & 
Nagel) according to the manufacturer’s protocol by a step 
gradient (10–250 mM imidazole). The proteins were sub-
sequently concentrated and re-buffered in assay buffer 
(200 mM Tris, pH 7.8) using the Amicon Ultra-15 Cen-
tral Filter System (30  kDa cut-off). The protein concen-
tration was determined by the Pierce BCA protein Assay 
(Thermo Fisher Scientific) using albumin as reference 
standard. The purity was additionally verified by SDS 
polyacrylamide gel electrophoresis (Additional file  33: 
Figure S29). The enzymes were stored at 4 °C without loss 
of activity for up to three weeks.

Determination of LinA activity
To determine the substrate specificity of LinA in a 
200 µL scale, a modified coupled enzyme assay with 
myokinase, pyruvate kinase and lactate dehydrogenase 
according to Patel et al. was used [49, 115]. Final con-
centrations were: 200 mM Tris (pH 7.8), 20 mM  MgCl2, 
360  µM NADH, 1  mM phosphoenolpyruvate, 2.5  mM 
ATP, 250  µM coenzyme A, 1  U   mL−1 myokinase 
(Merck), 1 U  mL−1 pyruvate kinase (Merck), 3 U  mL−1 
lactate dehydrogenase (Merck) and 1  µM LinA. The 
reaction was initiated with 1  mM of substrates (small 
carboxy acids including IAA, see Fig.  5, all from 
Merck). Water was used as negative control. The con-
tinuous assay relies on the NADH consumption which 
is photometrically detected at λ = 340  nm using the 
ClarioStar microplate reader at 30 °C for up to 30 min.

Determination of LinB activity
To determine LinB activity, a discontinuous UHPLC-
based assay was used. The final assay (500 µL) con-
tained 200  mM Tris (pH 7.8), 20  mM  MgCl2, 1  mM 
IAA-CoA and 1  µM LinB. The reaction was started 
with either 1  mM anthranilate (AA) or 5-hydroxyan-
thranilate (HAA) (Merck). Water served as negative 
control. After 2  h of incubation at 25  °C, the reac-
tion was stopped by shock freezing in liquid nitrogen 
and lyophilization. The residue was dissolved in an 
equal volume acetonitrile: water (50: 50), briefly cen-
trifuged (14,000×g, 2  min) and immediately subjected 
to UHPLC analysis using method 2 (Additional file 44: 
Table S5). A calibration curve of 4, 5 and IAA-CoA was 
recorded as standard for quantification.
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Combined LinA/LinB assay
To produce 4 and 5  in vitro, the following assay was 
set up in a 500 µL scale: 200 mM Tris (pH 7.8), 20 mM 
 MgCl2, 250  µM CoA, 2.5  mM ATP, 1  µM LinA, 1  µM 
LinB, and 1 mM AA and/or HAA. As controls, individ-
ual assay components were omitted. The reaction was 
initiated by addition of 1  mM IAA (3). The assay was 
incubated for 120  min at 25  °C. Lindolin detection was 
carried out by UHPLC-MS measurements as described 
above.

Bioinformatic analyses
Gene cluster analysis
Comparative gene cluster analysis was performed with 
CAGECAT [116], an online comparative gene clus-
ter analysis toolbox which allows homology searches 
between whole gene clusters or regions. The imple-
mented clinker tool [117] was used to visualize the align-
ment of the genomic neighborhood of the linA and linB 
gene loci (± 20 kb) extracted from the genomes of eight 
verified lindolin-producing Kickxellales species. The 
minimum alignment sequence identity was set to 30%.

Phylogenetic analysis of LinA
LinA-related enzymes were identified using the BLAST 
search tool (matrix: BLOSUM62; gap costs: existence 11, 
extension 1; expect threshold: 0.05) screening the non-
redundant protein sequences (nr) of NCBI for each fun-
gal order/phylum and other domains of life separately. 
For each order or phylum, ten (if available) most-likely 
hits (according to bit score) were depicted for further 
analysis. Sequences with less than < 400 or > 700 amino 
acids were omitted as L. pennispora LinA comprises 553 
aa. Moreover, biochemically verified aryl-CoA ligases 
were additionally included [48, 53, 57]. Protein acces-
sion numbers, e values and pairwise identities are listed 
in Additional file  39: Table  S8. A total of 222 amino 
acid sequences were aligned using MAFFT online [118] 
(matrix: BLOSUM62; gap open penalty: 1.53; gap exten-
sion penalty: 0.123; tree rebuilding number: 50; max 
iteration number: 100). The alignment was extracted to 
the IQ-Tree webserver [119] to generate Maximum-Like-
lihood trees with LG + R8 as best-fit model and a total of 
1000 replicates (bootstrap support). Single branch tests 
were performed by SH-aLRT. A bootstrap consensus tree 
was computed and included 222 taxa with 763 splits.

Construction of sequence similarity networks (SSN) for LinB
LinB-related enzymes were identified using the BLAST 
search tool (matrix: BLOSUM62; gap costs: existence 11, 
extension 1; expect threshold: 0.05) screening the non-
redundant protein sequences (nr) of NCBI for each fun-
gal order/phylum and other domains of life separately. 

For each order or phylum, 100 (if available) most-likely 
hits (according to bit score) were depicted for further 
analysis. Moreover, biochemically verified aryl-trans-
ferases were additionally included [48, 58, 120]. Protein 
accession numbers, e values and pairwise identities are 
listed in Additional file  40: Table  S9. SSNs were con-
structed using the Enzyme Function Initiative-Enzyme 
Similarity Tool (EFI-EST) [121]. Two different SSNs were 
generated with EFI-EST using the default setting of a  
−log(e value) = 5 for all-by-all BLAST to calculate simi-
larities and edge alignment score similarities result-
ing in 505 nodes and > 25,000 edges. The sequences in 
the generated SSN were restricted to a sequence length 
of 400–600 amino acids (Additional file  41: Figure S35, 
Additional file  42: Figure S36, Additional file  43: Figure 
S37). The alignment score threshold was set to 60 (cor-
responding to 35% sequence identity) or 26 (25%) for fig-
ure panels 8A and 8B, respectively. Data was visualized in 
Cytoscape v. 3.10.2 [122] using a “prefuse force directed 
layout” with the option “all nodes: alignment_score”.
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