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Abstract

fungus

Sustainable fungal materials have a high potential to replace non-sustainable materials such as those used for pack-
aging or as an alternative for leather and textile. The properties of fungal materials depend on the type of fungus and
substrate, the growth conditions and post-treatment of the material. So far, fungal materials are mainly made with
species from the phylum Basidiomycota, selected for the mechanical and physical properties they provide. However,
for mycelium materials to be implemented in society on a large scale, selection of fungal species should also be based
on a risk assessment of the potential to be pathogenic, form mycotoxins, attract insects, or become an invasive spe-
cies. Moreover, production processes should be standardized to ensure reproducibility and safety of the product.
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The need for sustainable materials

The world population is predicted to increase to 9.7 bil-
lion people in 2050 [1], thereby putting even more pres-
sure on natural resources than is happening today. The
materials used in industries are often non-sustainable
and dominated by the linear economic model to make,
use and dispose [2]. This linear approach is not sustain-
able and is already taken its toll on global ecosystems.
Fungal materials have high potential to replace non-
sustainable and/or polluting products and production
processes. For instance, they could replace, at least in
part, non-sustainable plastics, textiles, leather and con-
struction materials. Petrochemical based plastics are
widely used as packaging material. The amount of plas-
tics produced globally amounts over 360 million met-
ric tons per year [3] and has been growing annually by
8.4% in the period 1950-2015 [4]. Only 35% of the con-
sumer plastics was recycled in Europe in 2020, 42% was
incinerated for energy production, while 23% ended up
in landfills [3]. Spreading of (micro-)plastics as litter or
from landfills into the environment poses significant haz-
ard to both terrestrial and marine ecosystems. Cotton
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production also impacts the environment by its high
water demand and intense use of pesticides [5], while the
leather industry uses chemicals such as chrome for tan-
ning [6]. Finally, 4.2 giga tonnes of cement were produced
worldwide in 2019, which coincided with a concerning
amount of CO, emissions [7]. Clearly, we need to shift
towards a sustainable economy. The use of fungal materi-
als may offer a fundamental change in our current way
of manufacturing because these materials are produced
from waste streams. Moreover, the fungal materials can
be recycled at their end of life to make new materials, to
use as feed or fertilizer, or to improve soil structure [8,
9]. In this review, we will discuss the risks of mycelium
materials for workers, researchers, consumers and the
natural environment due to the fungal life style and the
production process of these materials. Based on this, we
will make recommendations for their safe introduction
on the market.

Fungal materials

The growing interest in fungal materials during the past
decade is illustrated by the increase in the number of
publications, patent applications and start-ups in this
field. Moreover, established companies like Adidas and
Hermeés have opened their doors for fungal materials
[10]. Mycelium composites and pure fungal materials are
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distinguished. In the former case, a network of hyphae
binds substrate particles together, whereas pure myce-
lium materials consists solely of fungal biomass. Wood
degrading basidiomycetes are mainly used to produce
these mycelium materials but species from other phyla
have also been explored [11] (Table 1).

Composite mycelium materials are usually made
by growing the fungus in a substrate, often a low-cost
organic waste stream. During colonization, the mycelium
acts as a glue that binds the substrate particles together.
The first step in the process of making a composite mate-
rial is the selection of the species and substrate. Com-
monly used substrates are for instance hemp shives,
different types of straw, and sawdust. The pasteurized or
sterilized substrate is inoculated with colonized substrate
from a previous batch or with spawn (i.e. a highly nutri-
tious substrate like grains that is colonized by the fun-
gus). Another approach is the use of mycelium that has
been blended in water or medium. The inoculated sub-
strate is grown in a mould for several days up to a month
depending on species, substrate, sample dimension and
growth conditions [12, 13]. Alternatively, the substrate
is pre-grown in for instance bags and then transferred to
a mould. At a certain moment, the colonized substrate
is removed from the mould and dried or growth is pro-
longed to mature the material followed by drying. The
drying process is essential to metabolically inactivate or
to kill the fungus. Drying temperature can range from
room temperature to 100 °C, while drying time varies
between a few hours to several days [12, 14]. Drying at
room temperature will normally inactivate but not kill
the fungus. For instance, dried material of Ganoderma
sp. could regrow a year after it had been dried at ambient
temperature [15]. In contrast, a temperature of >60 °C
will normally kill the fungus. The resulting mycelium
composite has foam-like properties with a density of
60-300 kg/m>. It can be used for insulation because of
its inherent low thermal conductivity and high acoustic
absorption [13]. Mycelium composite materials absorbs
70-75% of the sound at frequencies <1500 Hz [16] and
have a thermal conductivity of 0.04—0.08 W/(m K) [13],
both of which are similar to traditional insulation materi-
als. Dried mycelium composite can be (heat) pressed to
obtain materials with cork- and wood-like mechanical
properties [12]. These pressed composites can be coated
with resin and used as flooring [13], while the use of
pressed mycelium composite as building materials is also
being explored.

Besides inactivating (e.g. by drying at ambient tem-
perature) or killing (e.g. by heat-drying) the fungus
can also be maintained metabolically active to create a
biocomputational material. For instance, a living com-
posite made with Ganoderma resinaceum responds to
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pressure by changing its electrical activity [17]. Moreo-
ver, mycelium can be maintained active to enable pro-
duction of large size mycelium composites, for instance
to make mycelium connections between mycelium pan-
els [15, 18, 19].

Pure mycelium materials are made by using liquid- or
solid-state fermentation. Growing pure mycelium in a
solid-state fermentation is similar to the way mycelium
composites are produced. In the case of pure mycelium,
however, the fungal skin that develops at the substrate-
air interface is harvested. A CO, concentration of 5-7%
by volume and a temperature of 30-35 °C is used to
inhibit mushroom development of Ganoderma sp. and
to stimulate aerial hyphae formation, resulting in a
thick felty skin [20]. Pressing the skin during and after
growth is common practice to obtain a desired density
[20]. Mushrooms resulting from solid-state fermenta-
tion can also be used to make pure mycelium materials.
Mycelium films can be obtained by casting and drying
blended mushrooms. Mycelium can also be processed
before casting. For instance, white button mushrooms
(Agaricus bisporus) has been used to make chitin—glu-
can based nanopaper [21-24].

Static and dynamic conditions can be used for lig-
uid-state fermentation. Growth conditions such as
agitation, pH, oxygen, temperature, light, medium com-
position and amount of inoculum are being optimized
for each species. After the growth phase the fungal bio-
mass is harvested. In the case of liquid static cultures, a
sheet of mycelium is harvested that has formed at the
water—air interface [25, 26]. In contrast, total mycelium
is separated from the spent medium by filtration or cen-
trifugation from liquid shaken or bioreactor cultures
resulting in a “pulp” of biomass. The biomass can be
directly casted and dried or first homogenized before
casting and drying. The mycelium films resulting from
static or liquid fermentations can be processed to mod-
ify properties. For instance, treatment with the plasti-
cizer glycerol (> 8%) results in elastomer-like materials
that are more hydrophilic than untreated material [27].

Pure mycelium materials can be used as a foam, a cel-
lular scaffold or as a meat alternative [20]. Moreover,
the material can be physically and/or chemically pro-
cessed to manufacture leather-like materials. The use as
textiles is also being explored. Like mycelium compos-
ites, one may wish to keep the pure mycelium metaboli-
cally active in the final product to use it for instance as
smart wearables [28]. By measuring electrical activity it
was shown that pure Ganoderma resinaceum mycelium
responds to mechanical and optical stimulation [29].
This opens up a completely new range of fungal mate-
rial applications, such as sensors and biocomputers.
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The fungal life style

The Kingdom Fungi consists of nine phyla, of which the
Ascomycota and Basidiomycota represent most species
[30]. According to the Catalogue of Life the current num-
ber of identified fungal species exceeds 146.000 [31] but
the total number of species is predicted to range between
1.5 and 12 million [32, 33]. Fungi play a vital role in
most ecosystems by interacting with other living organ-
isms such as plants, animals, and algae [32]. A fraction
of the fungi can establish mutual beneficial interactions
with for instance plants (mycorrhizae) and algae and/or
cyanobacteria (lichens). On the other hand, fungi can
be pathogens of for instance animals, plants and other
fungi. A distinction is made between opportunistic and
classical pathogens that infect weakened or healthy indi-
viduals, respectively. Fungal pathogens may prevent spe-
cies to become too dominant in ecosystems but can have
devastating effects as well. For instance, members of the
genus Armillaria (Basidiomycota) are aggressive patho-
gens causing root disease that affect trees and shrubs
worldwide [32, 34]. Even more impactful, around 600
fungal species can infect humans. The far majority of
these fungi are opportunistic fungi that infect individuals
with a compromised immune system [35]. For instance,
Pleurotus ostreatus (oyster mushroom) (Basidiomycota)
and Saccharomyces cerevisiae (Ascomycota) that are
commonly used as food or to produce food, respectively,
are opportunistic pathogens that can cause allergies and
serious infections, albeit at low frequency [36, 37]. Apart
from infections, fungi can also give rise to disease by
causing allergies and by production of mycotoxins. In
addition, fungi play an important role in nature in nutri-
ent cycling by degrading organic waste streams such as
plant material. In fact, fungi are the main degraders of
lignin in wood [30]. Saprotrophic fungi that degrade
wood are classified as white-, brown- and soft-rot fungi.
White-rot fungi (mainly Basidiomycota) degrade cellu-
lose, hemicellulose and lignin, whereas brown-rot (Basid-
iomycota) degrade cellulose and hemicellulose, but do
not depolymerize lignin [30, 32, 38, 39]. Soft-rot is domi-
nated by soil-inhabiting Ascomycota that break down
cellulose and hemicellulose and lignin as well, albeit at a
much lower rate [32].

Fungi are typically opportunistic by adopting their
life style when (a)biotic conditions change. Endophytes
adopt the various fungal life styles and illustrate fungal
opportunism. Endophytes reside in plants, either actively
colonizing the host or simply being present in a dormant
state [40, 41]. Endophytes can be harmless or beneficial,
for instance by producing alkaloids that protect against
grazing [32, 40] or by promoting plant growth and fruit
production [40, 42]. However, endophytes can also be
pathogens or switch from a mutualistic to a parasitic
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mode of growth due to changes in the (a)biotic environ-
ment of the fungus [40, 41].

Dispersion of fungi in nature

Fungi reproduce by producing (a)sexual spores [43]. For
instance, asexual conidia are formed by specialized struc-
tures in ascomycetes, while asexual chlamydospores are
formed by vegetative hyphae of Ascomycota and Basidi-
omycota [32, 44, 45]. Moreover, Ascomycota and Basidi-
omycota form sexual asco- and basidio-spores. Part of
the spores (mainly sexual spores) are considered hardly
motile by being immobilized in the fruiting body. Other
spores (both sexual and asexual) will be dispersed by
water, air or by other vectors such as animals. Typically,
every cubic meter of air contains 1000 to 10,000 spores
[43]. Spores can be very stress resistant. For instance,
Paecilomyces variotii (Ascomycota) forms the most heat
resistant conidia reported to date with a decimal reduc-
tion time of more than 20 min at 60 °C [46]. Ascospores
can be even more heat resistant. For instance, those of
Talaromyces flavus (Ascomycota) have a decimal reduc-
tion time exceeding 5 min at 91 °C [47]. Spores can also
be highly resistant to drought, salt, radiation and oxida-
tive stress conditions. For example, conidia of Aspergil-
lus niger (Ascomycota) are extremely resistant against
X-ray, cosmic and UV-C radiation thereby likely to sur-
vive space travel [48]. Spores germinate when conditions
are favourable. Notably, only part of the conidia will ger-
minate when exposed to such conditions [49]. Only 20%
of the conidia of A. niger germinate in the presence of
50 mM glucose. The majority of these spores thus remain
in their stress resistant resting state. This provides a bet
hedging strategy to prevent for instance that all germlings
die when temperature exceeds the cardinal temperature
of 47 °C during daytime [49].

Less common is the formation of a specialized struc-
ture known as sclerotium [32, 50] that is extremely stress-
resistant and able to survive for years [32, 51]. Sclerotia
are aggregates of hyphae with a tough outer layer of thick
pigmented hyphae [32, 50] and their formation is trig-
gered by stressful conditions [51]. Sclerotia of L. mylit-
tae can even germinate and form a basidiocarp without
external water [32].

The dispersion of fungi can have a huge impact on food
production, human health and biodiversity. For instance,
they cause extinction of amphibians [52]. A single basidi-
ocarp is able to release 1 billion spores a day [53] but
human activities such as trade, transport and travel are
also important ways of spreading spores [32, 52]. For
instance, transport of plant material and presence of
the fungus on shoes, clothes and equipment are impor-
tant factors of spreading Fusarium TR4 (Ascomycota),



van den Brandhof and Wosten Fungal Biology and Biotechnology

thereby causing wilting of Cavendish bananas throughout
the world [54].

Risk assessment
Pathogenic fungi
Some of the fungal species that are used or have been
proposed to use for mycelium materials have been
reported to be pathogens of humans, animals and/
or plants (Table 2). However, none of these animal or
human pathogens are considered classical pathogens. The
majority of the species that are used to make mycelium
materials are white-rot basidiomycetes belonging to the
subphylum Agaricomycotina [30]. Some of these wood
degrading fungi can incidentally cause disease in human
as opportunistic human pathogens. Exposure to high
numbers of basidiospores can cause respiratory problems
as observed in growers of the oyster mushroom P. ostrea-
tus [36, 55]. Moreover, agaricomycetes can infect humans
with a compromised immune system. For instance, a
total of 71 S. commune infections (mainly broncho-pul-
monary mycosis and sinusitis) have been reported world-
wide until 2013 [56]. This number of infections should
be related to the 57 reported cases of fungemia (until
2003) caused by S. cerevisae that is widely used in bak-
ing and brewing and as a probiotic [37] and the 150 mil-
lion severe cases of fungal infections each year, of which
1.7 million patients die [57]. The opportunistic nature of
agaricomycetes makes that one can work with these fungi
at the lowest biosafety level during their production,
although regulations may differ between countries.
Plants are more prone to fungal infections than ani-
mals. Quite some fungi listed in Table 1 have been
reported to be pathogenic for plants (Table 2). In fact,
Botrytis cinerea, Phytophthora cinnamomi and Fusarium
spp. are listed as regulated non-quarantine organisms
in Europe, while Fusarium oxysporum f. sp. albedinis
is even listed as a quarantine organism. Moreover, B.
cinerea, F. oxysporum and Fusarium graminearum that
are listed in Table 2 are considered to be in the top 5 of
fungal pathogens based on scientific or economic impor-
tance [58]. In all other cases, fungi listed in Table 2 are
not mentioned by the European Food Safety Authority.
This implies that one can work with these fungi at the
lowest biosafety level during material production. Yet,
some of them are considered serious pathogens. Most
of the 43 polypores listed in Table 1 are strictly sapro-
trophic, some grow and on dead wood in living trees,
and a small number can invade and kill living wood [59,
60]. The polypores of Ganoderma that are often used to
make mycelium material (Table 1) are considered serious
pathogens for plantations and natural forests especially
in Southeast Asia, causing tremendous economic loss
[45, 61, 62]. For instance, Ganoderma boninense causes
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a destructive disease in palm plantations known as basal
stem rot [45, 61]. In the past this disease was mainly
found on older plants, but nowadays even young plants
are affected [61]. Stem rot caused by Ganoderma spe-
cies is also a disease for coconut palms [63]. White-rots
(both polypore and gilled fungi) have been described as
pathogens of grapevines [64, 65]. The main cause of white
rot in grapevine is Fomitiporia mediterranea, however,
other opportunistic species have also been described as a
causative agent [64]. For instance, Flammulina velutipes,
P, ostreatus, S. commune and Trametes hirsuta have been
observed on grapevine in Europe, generally on weakened
plants that have other diseases or wounds [65]. Another
study identified white-rot fungi, also used for mycelium
materials, on living fruit and nut trees at the West Coast
of the United States [66] (Table 2). Occurrence was in
most cases associated with wounded trees. Among oth-
ers, Oxyporus, Ganoderma and Trametes species were
often found on cherry trees, whereas species belonging
to Pleurotus and Laetiporus were more common on wal-
nut trees. In addition, white- and brown-rots can cause
decay of wooden structures [67]. In particular, Gloeophyl-
lum sepiarium causes decay in houses [59] and wooden
objects such as railroad and utility poles [68].

A fraction of the fungi listed in Table 1 have been
reported as endophytic fungi (Table 3). Endophytes
should be used with caution, especially when introduced
from a different continent since co-evolution between
host and the fungus did not take place. Hence, resistance
has not evolved which can make hosts highly suscepti-
ble [40]. It has been described that a change in lifestyle
from endophytic to pathogenic can be caused by a muta-
tion in a single locus [41]. The fact that disease is often
only detected when sporocarps are formed complicates
risk management. Furthermore, little is known how the
intra-species genetic variation affects the life style of the
fungus [32, 33]. This genetic variation can be high. For
instance, a diversity of 0.2 has been found within synony-
mous sites of S. commune [69].

Mycotoxin production

Some fungi listed in Table 1 produce mycotoxins, some
of which can even be used as a biological weapon. Iso-
lates of E oxysporum [70], E graminearum [58] and
Aspergillus [71] are known to produce a variety of myco-
toxins. Basidiomycetes also have the ability to produce
toxins, leading to hundreds of deaths every year [72].
For instance, the white-rot fungus Galerina marginata is
considered highly poisonous due to its ability to produce
amatoxin [73, 74]. Mycotoxin levels are strictly moni-
tored in food, but it may be relevant for fungal materi-
als as well depending on their application. For instance,
mycelium materials may be in direct contact with human
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Table 2 Pathogenic species used or proposed to make mycelium materials

Species

Description (Reference)

Abortiporus biennis
Agrocybe aegerita
Bjerkandera adusta*

Botrytis cinerea*®

Daedaleopsis confragosa
Flammulina velutipes

Fomes fomentarius*

Fomitiporia mediterranea
Fomitopsis pinicola*

Fusarium graminearum*

Fusarium oxysporum*

Ganoderma applanatum
Ganoderma lucidum

Ganoderma resinaceum
Grifola frondosa

Hypsizygus ulmarius
Irpiciporus pachyodon
Irpex lacteus*
Laetiporus sulphurous

Lichtheimia corymbifera®
Mucor genevensis

Mucor mucedo
Neofavolus alveolaris
Oxyporus latemarginatus*
Phaeolus schweinitzii
Phytophthora cinnamomi
Piptoporus betulinus
Pleurotus ostreatus*

Pleurotus cornucopiae
Pleurotus eryngii
Pleurotus pulmonarius
Pycnoporus sanguineus*
Rhizomucor miehei
Rhizopus oryzae*
Saksenaea vasiformis

Schizophyllum commune*

Stereum hirsutum*
Trametes trogii*
Trametes hirsuta*
Trametes suaveolens
Trametes versicolor*

Heart rot [68]
Necrotrophic parasite [148]
Pathogen on different species of trees and reported as a human pathogen [149]; Trunk rot [103]

Plant pathogen [11, 32]; Botrytis rot also known as grey mould causing stem rot, seedling wilt and fruit rot on various plant families
[68]; Necrotroph, can infect more than 200 plant species [58]

Trunk rot [103]; Necrotrophic parasite [148]
Causes white rot and may be harmful to host plants [65]; Xylem rot on various woody plants [68]; Trunk rot [103]

Found on living and dead hardwoods [59], and can cause mottled rot and trunk rot [68]; Xylem endophyte considered to be patho-
genic [40]; Necrotrophic parasite [148]; Trunk rot [103]

Associated with trunk diseases such as esca in grapevines [64, 65, 68]
Necrotrophic parasite [148]; Heart rot [59, 103] on living conifers and black cherry and decay in timber [68]

Plant pathogen, including for corn, wheat, rice and various plant families [68]; Highly destructive pathogen of all cereal species [58];
Plant pathogen and health risk for humans and animals [97]

Plant pathogen [11, 32] and human pathogen [68]; Soil-borne pathogen that causes vascular wilt on a wide range of plants [58]

Causing heart and butt rot, pathogen in perennial crops and natural forests in India [62]; Butt rot [103]; Necrotrophic parasite [148];
Causing several types of rot in trees of multiple plant families [68]

Pathogenicity on hardwoods [66]; Pathogen in perennial crops and natural forests in India [62]; Necrotrophic parasite [148]; Butt rot
and lethal root rot in trees of multiple plant families [68]

Pathogen in perennial crops and natural forests in India [62]; Necrotrophic parasite [148]; Heart rot on various trees [68]

Found on roots of living trees, hardwoods and conifers [59], and can cause butt rot [68]; Root pathogen [150]; Necrotrophic parasite
[148]

Necrotrophic parasite [148]
Canker and white rot (but not decay of heartwood) [68]; Necrotrophic parasite [148]
Mostly strictly saprotrophic, but can cause cankers, decay and mortality of weak trees [68]

Pathogen causing heart rot [150]; Necrotrophic parasite [148]; Rot and hollowing in living hardwoods, especially Quercus [68], and
conifers [59]; Trunk rot [103]

Human [151] and animal [152] pathogen

Fruit rot in Carica papaya [68]

Rot in multiple plant families [68]

Necrotrophic parasite [148]

Pathogenicity on hardwood hosts [66]

Necrotrophic parasite [148]; Root and butt rot [103] on gymnosperms [68]; Found on roots of living trees [59]

Plant pathogen [11]; Serious pathogen of hardwood forests and various crop species [68]; pathogen for oak trees [98]
Heart rot in Betula [103] being latent present [150]; Necrotrophic parasite [148]

Pathogenicity on trees and nematodes [149]; Necrotrophic parasite [148]; Heart rot [103]; Can cause respiratory problems when
cultivated [36, 55]

Necrotrophic parasite [148]

Necrotrophic parasite [148]

Causes distinct white rots in dead and living wood [65]; Necrotrophic parasite [148]
Plant pathogen [153]

Human pathogen that can cause mycotic diseases [154]

Root rot, fruit rot, chlorosis and wilting on various plants [68]; Human pathogen [155]
Human and animal pathogen [152]

Xylem rot [103]; Weak pathogen on grapevine [65]; Plant pathogen invading living wound tissue and can cause rot [156]; Infection in
humans [56, 151]

Necrosis, associated with esca and heart rot [68]

Necrotrophic parasite [148]

Wound pathogen mainly on older grapevines [65]; Opportunistic pathogen infecting through wounds [68]
Necrotrophic parasite [148]; Heart rot [103]

Pathogen on apple and other trees [149]; Opportunistic pathogen [68]

*Also part of Table 3
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Table 3 Endophytes used or proposed to make mycelium materials
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Species

Description (Reference)

Bjerkandera adusta*
Botrytis cinerea*
Ceriporia lacerata
Coprinellus micaceus
Coprinopsis cinerea
Fomes fomentarius*
Fomitopsis pinicola*
Fusarium graminearum*
Fusarium oxysporum*
Ganoderma carnosum
Irpex lacteus™
Lichtheimia corymbifera®
Oxyporus latemarginatus*
Pleurotus ostreatus*
Polyporus arcularius
Pycnoporus sanguineus*
Rhizopus oryzae*
Schizophyllum commune*
Stereum hirsutum*
Trametes gallica*
Trametes hirsuta*
Trametes versicolor*
Trichoderma asperellum
Xylaria hypoxylon

Endophyte [157]in healthy trees [158]

[
Endophyte [157
Endophyte [157
Endophyte [157
Endophyte [157
[

Ti
1
]
1
]
Endophyte [40, 157] in healthy beech trees [44, 150]
Endophyte [157]

Endophyte [157]
Endophyte [157]
Endophyte [157]
Endophyte [157]
Endophyte [157]
Endophyte [157] isolated from red peppers [80]
Endophyte [157]

Endophyte [157]

Endophyte [157]

Endophyte [157]

Endophyte [157]

Endophyte [157]

Endophyte [157]

Endophyte [157]

Endophyte [157] in grapevine in southern Europe [65]
Endophyte [98, 157]

Endophyte [157]

*Also part of Table 2

skin when used as leather-like materials. It has been
shown that mycotoxins can penetrate the skin [75] and
therefore use of fungi producing mycotoxins should be
avoided. Of importance, apart from E oxysporum and
E graminearum none of the fungi listed in Table 1 are
known to produce mycotoxins.

Impact on the biotic environment

Fungi and insects are abundant in nature and they have
evolved different interactions [76]. Insects benefit from
fungi as food source, mechanical protection and anti-
microbial defence. Fungi benefit from insects in a simi-
lar way, while insects also serve as a vector for fungal
spore dispersal [76]. Fungi are known to produce com-
plex mixtures of volatiles. The composition of volatile
compounds can vary depending on growth conditions
[77, 78] and developmental stage [79]. Hundreds of vola-
tiles have been identified, including alcohols, aldehydes,
esters, phenols and ketones [80, 81]. Volatiles are synthe-
sized as by-products of metabolism and can have a pro-
tective or attractive role in interaction with animals [75,
76]. A well-known compound is the alcohol 1-octen-3-ol
[80, 81], which can act both as attractant and repellent

depending on the fungus-insect interaction [82]. Female
flies are attracted by volatiles to lay eggs on the fruiting
body to provide larvae with fungal tissue as a food source
[32, 83]. In some cases, this is mutually beneficial when
dispersal of fungal propagules by the insect takes place
[76, 83]. These interactions can also result in the attrac-
tion of generalist predator insects to prey on fungus-
insects [84]. Ants can also be attracted to mushrooms
[85—-87]. For instance, the ant species Euprenolepis pro-
cera is a specialist in harvesting of and living on fruiting
bodies [85, 86].

A range of volatile compounds have been identi-
fied in species listed in Table 1. Most publications are
about volatile compounds from (fresh) basidiocarps
[80, 84], while few discuss volatile compounds of veg-
etative mycelium. The mycelial volatile compounds of
the commonly used species Trametes versicolor and
P ostreatus are listed in Tables 4 and 5, respectively.
An important aspect for insect herbivores to recog-
nize host plants is the perception of the whole blend
of volatiles. Therefore, testing individual compounds
may not always be representative for insect behaviour
[88]. Studying the natural effects of fungal volatile
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Table 4 Volatile compounds of T. versicolor when grown on beech wood [159] or potato dextrose [159, 160] in the absence of

mushroom formation

Compound (Class) Beech wood Potato dextrose Interaction

(Reference)

1,2-Dimethylcyclopropane (H)
2-Methylbutane (H)

Isopropyl alcohol (Alc)
2-Methylpentane (H)
2-Butanol (Alc)

3-Methylfuran (F)

Dimethyl carbonate (Es)
Methyl propionate (Es)
3-Methyl-2-butanone (K)
3-Methyl-2-butanol (Alc)
1,3,5-Trioxane (=)
3-Pentanone (K)
2,5-Dimethylfuran (F)
244-Trimethyl-1-pentene (H)
2-Methyl-3-pentanone (K)
3-Ethyl-2-methylpentane (H)
Cycloheptatriene (H)
2-Methyl-3-pentanol (Alc)
Octane (H)
2,3-Dimethylbutanoic acid methy! ester (Es)
3-Methylhexanal (Ald)
Ethylbenzene (H)

Xylene (H)

Nonane (H)

Methyl furan-3-carboxylate (F)
3-Ethyl-2-methyl-3-pentanol (Alc)
Ethyltoluene (H)

Methyl 2-furoate (Es)
3-Octanone (K)

2-Pentylfuran (F)
(1,2-Dimethylpropyl)cyclopropane (=)
Phthalic anhydride

Selinene (T)

Cedrene (T)

Longipinene (T)

Thujopsene (T)

Cuparene (T)

Cadinene (T)

Diphenylphenol (Alc)

e i S e el e e e S i S S i ol S S S S S S S O e i e S S

SR[162]
R[163]

+

T

Compound class: (Alc) Alcohols; (Ald) Aldehydes; (Es) Esters; (F) Furans; (H)
(R) insect repellent; (SR) terrestrial molluscs repellent

compounds has similar challenges [81]. Together,
fungal materials may attract certain insects, while
repelling others. When fungal materials are widely
implemented in society they could impact insect bio-
diversity. Coating of mycelium materials is an effective

ydrocarbons; (K) Ketones; (T) Terpenes; (-) undescribed. Interaction: (A) insect attraction;

way to prevent such effects. For instance, coating of
pressed mycelium composites with a mixture of guay-
ule resin and vegetable oil improves resistance against
termites [89].
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Table 5 Volatile compounds of R ostreatus when grown on sugarcane bagasse [78], wheat straw [164] or Raper medium [78] in the

absence of mushroom formation

Compound (Class) Ligno-cellulose

Raper medium Interaction (Reference)

1-Heptene (H)
2-Methylbutanol (Alc)
1-Hexanal (Ald)
1-Octene (H)
1,3-Octadiene (H)
a-Pinene (T)
2-Octen-3-one (K)
1-Octen-3-ol (Alc)
3-Octanone (K)
3-Octanol (Alc)
Octanal (Ald)
2-Octenol (Alc)
1-Octanol (Alc)
4-Methoxybenzaldehyde (Ald)

T

+

SR[162]
A[165];R[166]
+
+ A[80,81]; A&R [82]; SR [162]
+ SR[162]
+
A[167]
+
+
R[168]

Compound classes: (Alc) Alcohols; (Ald) Aldehydes; (H) Hydrocarbons; (K) Ketones; (T) Terpenes. Insect interaction: (A) attraction; (R) insect repellent; (SR) terrestrial

molluscs repellent

Recommendations

Fungal materials have attracted a lot of interest dur-
ing the last decade, showing analogy with the interest
in collected and cultivated edible mushrooms. The lat-
ter prompted the Nordic countries to re-assess safety of
mushrooms that are being traded and / or collected and
consumed by individuals [90]. Clearly, risk assessment of
fungi for materials is different from that of consumption
but we can learn from such assessments.

The list of species used or proposed to make mycelium
materials (Table 1) is a fraction of the (wood degrading)
fungi found in nature. Effective screens will be needed to
unravel the potential of fungal species to produce myce-
lium materials. So far, only three publications [11, 91, 92]
reported screening of > 10 species for their applicability
to make composite materials. This should be scaled up
selecting not only for mechanical properties but also for
instance for rate of colonization, robustness of perfor-
mance, the amount of CO, emission, visual appearance
and haptic properties, genetic stability of the strain, and
the ability to easily maintain stocks of the strains. Sev-
eral methods have still to be developed, while others have
been established such as those to quantify mechanical
properties [92], to store fungi [93], or to monitor homo-
geneity and rate of colonization in a 3D substrate [94].

On top of the mechanical and other performative prop-
erties, fungi should be screened based on a risk assess-
ment. Such a risk assessment could be partly based on a
history of safe use, for instance as a food. Risk assessment
relies on a correct identification of the fungal species that
is used. Therefore, standards of identification should be

used such as proposed recently [95]. This identification
should be linked to biosafety. In particular, fungi should
be selected that can be used at Bio Safety Level 1 during
production of the mycelium materials (see [96, 97]). Path-
ogenic fungi and fungi producing mycotoxins should not
be used when the final product contains living mycelium.
In addition, species should be avoided that attract insects
when grown in certain substrates. Still, little is known
about release of volatiles by fungi and their impact on
insect communities. Species that are commonly used to
produce fungal materials have been selected based on
their speed of colonizing substrates, thereby being poten-
tially highly competitive in nature. Especially when exotic
fungi are used they may become invasive, replacing part
of the local fungal communities [98].

Fruiting should be repressed during formation and
later use of mycelium materials to prevent spreading
in the natural environment. Mushroom production in
Coprinopsis cinerea and Pleurotus djamor is repressed
by glycogen synthase kinase-3 (GSK-3) inhibitors like
lithium chloride and CHIR99021 trihydrochloride.
These inhibitors have been proposed to be included
in the substrates to inhibit fruiting body formation on
fungal materials and regulating mycelium growth [99].
Alternatively, one could use non-sporulating strains.
Such strains are already being used in the cultivation of
P, ostreatus to protect workers from exposure to spores
[36, 55]. Clearly, the most practical solution to pre-
vent spreading in the natural environment is to kill the
fungus before it leaves the production facility. Use of
local strains not only prevents introduction of invasive
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species, it also is the easiest way to comply with the
Nagoya protocol. This protocol was put in place in 2014
to enforce fair and equitable sharing of benefits arising
from the use of genetic resources from countries [100].

When working with fungi standardisation is key [9].
This is not only essential to compare screens in differ-
ent laboratories but also to ensure reproducible manu-
facturing and material properties. For instance, drying
of mycelium materials should be standardized. So far,
drying is done at room temperature, in an oven, or a
drier. An important aspect is the insulation property
of mycelium composites, with surrounding mate-
rial potentially keeping the inner section viable and/
or moist. Therefore, studies should unveil viability of
mycelium composites after drying and heat treatment
by plating and counting colony-forming units. Possibly,
substrates, species and materials dimensions as well as
methods of drying should be optimized. In addition,
studies have to be performed to demonstrate stability
of the material in time. Only recently an article assessed
the impact of tropical weathering conditions (75+15%
relative humidity and 27.5+2.5 °C) on the mechani-
cal properties of composite material [101]. Mechanical
properties of uncoated samples substantially dropped
over 35 days, whereas applying an oil-based coating
reduced the weathering effect, albeit only significant for
tensile strength. This was explained by the high poros-
ity of the composite material that prevented the coat-
ing from forming a perfect sealed surface, thus enabling
moisture from entering. Finally, biodegradability of the
mycelium material after use should be assessed as well
as the bioavailability of the nutrients contained in the
material. So far, these topics have not been addressed in
the literature.
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Together, the following recommendations are made.

+ Fungi used for fungal materials should be identified
via standardized procedures;

+ Use standardized methods to select fungal species
and strains for specific applications;

+ Fungi should be selected that are not pathogenic to
humans, animals and plants;

+ Fungi should be selected that do not produce myco-
toxins, even when the fungal materials have non-food
applications;

«+ Use spore-less strains;

+ DPreferably use local fungi to produce mycelium mate-
rials;

+ Work at biological safety levels as dictated by the
local authorities;

o Preferably kill the fungus in the mycelium material
before it is leaves the production facility;

+ Regularly confirm efficacy of the killing procedure.

Conclusions

Fungal materials have a very high potential to replace
non-sustainable products on the market. In fact, fun-
gal materials may even have properties that are not yet
provided by other materials. Given their potential, fun-
gal materials may be used at a very large scale. In the
future, people may be surrounded by these materials in
their houses, at work, and may even wear it. This requires
a critical assessment of the risks associated with fungal
materials. This includes the selection of species used for
making the materials, the conditions used during the
production process and when they leave the produc-
tion facility, as well as measures to prevent impact on

Species

- Species is not a pathogen

- Species does not produce spores

- Species does not attract insects

- Species is not exotic

- Species does not produce
mycotoxins

- Species used is known
- Species is stable during storage

Fig. 1 Risk mitigation of fungal material processing

Material

- Product conform to standards
- Product is reusable, recyclable
or compostable at end of life

- Killing is verified

- Biodegradability is known

- Avoid toxic chemicals during
post-treatment

- Avoid reinforcement with
non-degradable material
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the environment when the products are used in society

(Fig. 1). Our assessment of pathogenicity and myco-
toxin data indicates that fungal species that have been
described in scientific publications to produce fungal
materials show low risk, if at all, for workers, consumers
and the environment.

Genetic modification could be used to improve prop-
erties of mycelium materials, and to reduce pathogenic-
ity, invasiveness, mycotoxin production, spreading in the
environment, and/or attraction by insects. In this case
too, introduction on the market should be accompanied
by a risk assessment. This would be particularly needed
when the mycelium product contains a living fungus.
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