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Abstract 

Chitins and chitosans are among the most widespread and versatile functional biopolymers, with interesting biological 
activities and superior material properties. While chitins are evolutionary ancient and present in many eukaryotes except 
for higher plants and mammals, the natural distribution of chitosans, i.e. extensively deacetylated derivatives of chitin, is 
more limited. Unequivocal evidence for its presence is only available for fungi where chitosans are produced from chitin 
by the action of chitin deacetylases. However, neither the structural details such as fraction and pattern of acetylation nor 
the physiological roles of natural chitosans are known at present. We hypothesise that the chitin deacetylases are gener‑
ating chitins and chitosans with specific acetylation patterns and that these provide information for the interaction with 
specific chitin‑ and chitosan‑binding proteins. These may be structural proteins involved in the assembly of the complex 
chitin‑ and chitosan‑containing matrices such as fungal cell walls and insect cuticles, chitin‑ and chitosan‑modifying and 
‑degrading enzymes such as chitin deacetylases, chitinases, and chitosanases, but also chitin‑ and chitosan‑recognising 
receptors of the innate immune systems of plants, animals, and humans. The acetylation pattern, thus, may constitute a 
kind of ‘ChitoCode’, and we are convinced that new in silico, in vitro, and in situ analytical tools as well as new synthetic 
methods of enzyme biotechnology and organic synthesis are currently offering an unprecedented opportunity to deci‑
pher this code. We anticipate a deeper understanding of the biology of chitin‑ and chitosan‑containing matrices, includ‑
ing their synthesis, assembly, mineralisation, degradation, and perception. This in turn will improve chitin and chitosan 
biotechnology and the development of reliable chitin‑ and chitosan‑based products and applications, e.g. in medicine 
and agriculture, food and feed sciences, as well as cosmetics and material sciences.
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Chitosans as a versatile family of functional 
biopolymers
Chitins and, in particular, chitosans, their partially dea-
cetylated derivatives, are among the most versatile func-
tional biopolymers. In nature, they are integral parts of 
complex matrices, such as arthropod cuticles or fun-
gal cell walls, which can be highly flexible or extremely 
durable, even translucent or bioactive, making them out-
standing biomaterials. They have gel-, film-, and fibre-
forming properties; they can be nano-formulated into 
nanoparticles, nanocapsules, or nanofibers; they have 
metal ion- and protein-binding capacities; they have 

antibacterial and antifungal activities; they can promote 
plant growth and development; they can induce plant 
disease resistance and abiotic stress tolerance; they have 
blood-coagulating and wound healing properties, etc. In 
different countries, they are already being used for waste 
and drinking water purification or the clearing of bever-
ages such as juices, beer, and wine; as a cosmetics and 
health care ingredient; as a probiotic animal feed additive 
or human food supplement; as a plant strengthener or 
biopesticide; and as haemostatic or wound-healing dress-
ing in veterinary or human medicine. Potential future 
uses in different stages of development are as phar-
maceutical drug, gene, or vaccine delivery vehicle and 
diverse other medical applications, e.g. in cancer treat-
ment. Other promising uses would be possible e.g. in the 
paper and textile industries or as a bioplastic, but these 
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would require larger scale production facilities than cur-
rently available. And: chitosans are environment-friendly 
and consumer-safe, non-toxic and non-allergenic, biode-
gradable and biocompatible in many systems [1].

Of course, not all chitosans possess all of these proper-
ties and bioactivities. The functional diversity is based on 
an equally broad structural diversity. Chitosans are linear 
co-polymers of glucosamine (GlcN) and N-acetylglucosa-
mine (GlcNAc) residues, differing in (i) their degree of 
polymerisation (DP), i.e. the number of monomeric units 
in the molecule, (ii) their fraction of acetylation (FA), i.e. 
the relative abundance of GlcNAc residues, and (iii) their 
pattern of acetylation (PA), i.e. the sequence of GlcN and 
GlcNAc residues within the chain. All three parameters 
are known to deeply influence the physico-chemical 
properties and biological activities of the chitosans [2, 
3]. In fact, the solubility in slightly acidic media (below 
ca. pH 6) is generally accepted as the defining criterion 
for the distinction between acid-insoluble chitins and 
acid-soluble chitosans. Importantly, chitosan samples are 
always mixtures of molecules more or less strongly differ-
ing in these parameters, so that their dispersities (Đ) will 
also significantly influence their functionalities [4].

‘First generation’ commercial chitosans were poorly 
defined mixtures of chitosans with often large batch-to-
batch variability, but research of the past decades enabled 
the production of ‘second generation’ chitosans which are 
well-defined in terms of DP and FA, and have known ran-
dom PA [5–8]. And at lab scale, even better defined, less 
disperse chitosans with non-random PAs are beginning 
to be reported, e.g. based on biotechnological production 
or modification processes, raising expectations for ‘third 
generation’ chitosans with further improved functionali-
ties [2, 3, 9, 10].

Why studying fungal chitosans?
The market availability of second generation chitosans 
with well-defined properties and functionalities and low 
batch-to-batch variability has led to a surge in market 
interest so that for the first time, demands are exceeding 
supplies [11]. However, chitosan production from crus-
tacean chitin is limited by the availability of shell wastes 
[12, 13]. Fungal cell walls are an interesting additional 
source of chitin, available in more constant quality with 
no seasonal variation from almost sterile waste streams 
of the food and biotechnology industries and, at least 
potentially, in a more sustainable way [14]. An additional 
advantage of fungal chitin over shellfish chitin is its non-
animal origin which is preferred for e.g. cosmetic appli-
cations or by customers who follow a vegan lifestyle.

The main drawback of fungi as a source of chitin is the 
fact that in fungal cell walls, chitin is covalently linked to 

glucans, making extraction more demanding and the prod-
uct, at least potentially, less pure [15]. Clearly, more research 
into the biosynthesis, cross-linking, and degradation of chi-
tin in fungal cell walls is required as a basis to develop yield- 
and cost-efficient protocols for its extraction [16, 17]. And of 
course, a fundamental understanding of chitin metabolism 
and its physiological role in the growth and differentiation 
of fungi is an exciting scientific goal in itself.

But fungi cannot only serve as a source of chitin for 
chemical conversion into chitosan. Fungi are also the 
only confirmed source of natural chitosans [18, 19]. This 
biogenic chitosan is believed to originate from chitin by 
the action of chitin deacetylases acting in concert with 
chitin synthases [20]. And it is highly likely that enzy-
matic deacetylation yields chitosans with different, spe-
cific patterns of acetylation, while chemically produced 
chitosans are invariably characterised by random acetyla-
tion patterns. As the distribution of acetyl groups along 
the linear chitosan chain has recently been proven to 
critically influence the physico-chemical properties and 
biological activities of chitosan oligomers and polymers 
[9, 10, 21–23], the study of natural chitosans and their 
original in muro pattern of acetylation becomes highly 
promising, potentially opening up completely new possi-
bilities for chitosan-based applications [2, 3].

And of course again, aiming at a fundamental under-
standing of fungal chitosans is an exciting and promising 
research area in itself. Why do some fungi under some 
conditions convert some of their chitin into chitosans? 
And how do they do it? Why do chitin deacetylases typi-
cally occur in multigene families [24, 25]? What is the 
DP, FA, and PA of these natural chitosans? What are their 
physico-chemical properties and how do they contrib-
ute to the properties of the fungal cell walls? What is the 
physiological role of these chitosans in growth or mor-
phogenesis of the fungi, or in the interaction with e.g. 
host organisms? Plenty of questions which await answers.

Three advances of research in the last decade
Bioanalytics and bioinformatics offer new tools to study 
and model structures and functions of chitosans
The progress from first to second generation chitosans was 
largely driven by the improvement of analytical tools for 
their structural characterisation: HPSEC-RI-MALLS for 
DP and ĐDP determination, 1H- and 13C-NMR for FA and 
PA analysis [5, 26–28]. Currently, new methods are being 
developed, most prominently based on mass spectrometry 
(MS), first for chitosan oligomers, and then, in the form of 
enzymatic-mass spectrometric fingerprinting (EMS-FP), 
also for chitosan polymers [4, 29, 30]. MS allows the accu-
rate determination of DP and FA of chitosan oligomers up 
to a DP of ca. 15, and of PA up to DP 6, for the entire range 
of FA-values [29]. Also, MS techniques automatically give 
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insight into the dispersities in both DP (ĐDP) and FA (ĐFA), 
so that mixtures of chitosan oligomers can be comprehen-
sively described, as long as they are not too complex and the 
DP is not too high [31]. EMS-FP, i.e. the MS analysis of chi-
tosan oligomer mixtures obtained upon enzymatic hydroly-
sis of a chitosan polymer using enzymes with known subsite 
preferences, allows a more accurate determination of FA and 
a more detailed analysis of PA than can be achieved using 
NMR, and this even with sub-microgram quantities of 
material compared to multi-milligram amounts required for 
NMR [10, 30, 32]. Capillary electrophoresis (CE) emerges as 
a potential tool to analyse ĐFA of chitosan polymer samples, 
a parameter that was hitherto not accessible to any analyti-
cal technique [33, 34]. Solid state NMR allows non-destruc-
tive insights into complex biological matrices into which 
chitin is intrinsically embedded, such as fungal cell walls or 
insect cuticles [35–40]. Unexpectedly, these studies revealed 
a significant role of α-1,3-glucans and, at least in Aspergillus 
fumigatus, of galactomannans in the rigid chitin/ß-1,3-glu-
can complex of the fungal cell wall. Interestingly, depleting 
the cell wall of galactomannans led to a five-fold increase in 
chitin content [41, 42], an observation of potentially signifi-
cant impact for the biotechnological production of fungal 
chitin and chitosan, given that the chitin content in fungal 
cell walls rarely exceeds 15%.

These improvements in methods of analytical biochemis-
try are paralleled and supported by tremendous advances in 
bioinformatic tools. Among them, one of the most fascinat-
ing is the ab initio modelling of protein structures using the 
program AlphaFold which allows the accurate prediction 
of the 3D structures with atomic accuracy even of proteins 
for which no crystal structures exist, as a basis for dock-
ing and molecular dynamics studies for e.g. chitin- or chi-
tosan-protein interactions [43]. These are relevant for our 
understanding of the biosynthesis and assembly of chitin/
chitosan-containing biological matrices as well as their enzy-
matic modification and biodegradation and, eventually, the 
interaction of oligomeric breakdown products with targets 
and receptors e.g. of the immune systems of plants and ani-
mals [44–48].

Solid state synthesis and recombinant enzymes offer 
access to fully defined chitosan oligomers
This progress in analytical tools is currently driving the 
development of even better characterised third genera-
tion chitosans, either biotechnologically using enzymes 
or chemically using automated solid-state synthesis.

The biotechnological approach makes use of the increas-
ing number of well-characterised, regio-selective chitin 
deacetylases and sequence-dependent chitosan hydrolases 
[49–55]. The latter can yield mixtures of chitosan oligom-
ers with partially defined acetylation patterns, as the sub-
site preferences of the hydrolases determine the residues 

at and near the reducing and non-reducing ends of the oli-
gomeric products. The former, acting in forward or reverse 
mode, can yield fully defined, partially acetylated chitosan 
oligomers [22]. Interestingly, these enzymes can also con-
vert high-FA chitosan polymers into low-FA chitosans or, 
in reverse mode, polyglucosamines into low-FA-, then also 
high-FA chitosan polymers with, depending on the enzyme 
used, different PAs [9, 10].

By sequentially adding monosaccharide building blocks 
to a solid support, automated glycan synthesis allows the 
production of practically any chitosan oligomer with fully 
defined sequence, limited only by solubility issues par-
ticularly of high-DP, high-FA oligomers [56, 57].

Unlike the enzymatic approach which is limited in the 
oligomers that can be targeted by the sequence pref-
erences of the (still few) available enzymes, chemical 
synthesis can yield any oligomer. On the other hand, 
solid-state synthesis only yields low amounts of products 
in the mg-range, while enzymatic production processes 
can be scaled up, potentially to yield kg-amounts.

Physicochemical properties and biological activities 
of chitosans are influenced by the pattern of acetylation
Theoretical considerations had long predicted that PA 
should play a crucial role in determining both physico-
chemical properties and biological activities of chitosans, 
and first experimental evidence starts accumulating to 
verify this hypothesis.

The physico-chemical properties of chitosan polymers 
have been predicted to be influenced by PA based on 
comparison with other natural biopolymers or synthetic 
copolymers in which the pattern of substitution or the 
monomer sequence is known to influence e.g. solubility, 
phase behaviour, solution rheology, gelling, crystallinity, 
or conformation. Studies using chitosan polymers pre-
pared using recombinant chitin deacetylases and, there-
fore, differing in their PA now showed that PA indeed 
influences the rheological properties of chitosans, includ-
ing their suitability for nano-formulation [9, 10].

The influence of PA on biological activities of chitosans 
has been predicted based on the assumption that the 
sequence of more hydrophobic GlcNAc and positively 
charged GlcN residues will determine their interaction with 
hydrophobic and negatively charged patches on the surface 
of proteins [58]. These might be chitinases or chitosanases 
processing the chitosan polymers applied to a target tissue, 
yielding specific oligomeric products. And it was recently 
shown that the bioactivity of chitosan oligomers depends 
on their monomer sequence [21, 23, 44, 59]. The reason for 
this PA dependency of biological activities of chitosans pre-
sumably lies in the presence of chitosan-specific receptors 
involved in the cellular perception of chitosans e.g. by the 
immune system of animals and plants [60].
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Three areas ripe for development
Biotechnological production of chitosans in biorefineries 
and cell factories
Waste streams of the fisheries and food production are 
limited resources that cannot be expected to satisfy 
the increasing demand for well-defined chitosans [12]. 
There are a plethora of markets, with different require-
ments concerning quality and purity, different price sen-
sitivities, and different needs in terms of volumes. While 
only rather small amounts (perhaps in the range of tens 
of kg/a) will be required for biomedical, pharmaceuti-
cal, or biocosmetic applications, the amounts required 
for agricultural purposes or food and feed applications 
are much higher (in the range of hundreds of t/a), and 
the demands for material applications such as for paper 
and textile finishing, bioplastics, or green batteries are 
completely beyond reach even if fungal and insect waste 
streams would be exploited (in the range of thousands of 
t/a, a single paper factory may require roughly the cur-
rent global annual chitosan production of perhaps 5,000 
t/a). Consequently, biotechnological production pro-
cesses will be needed, also to protect biological sources 
from over-exploitation.

Chitosan polymers may best be produced by fungal fer-
mentation given that fungi are natural producers of chi-
tosans, but fungal chitosan is covalently embedded into 
the cell wall, making extraction difficult [15]. Genetic 
engineering may be employed to reduce or eliminate 
chitin-glucan crosslinks and the mutants might still be 
viable under the controlled conditions of a fermenter 
but so far, this approach has not yet been successful [61]. 
Alternatively, organisms not naturally producing chitin 
or chitosan may be developed into transgenic produc-
tion systems secreting the polymers into the medium. 
Again, this has not yet been achieved at any reasonable 
scale [62]. Still, giving our increasing knowledge on chi-
tin synthases and chitin deacetylases, both approaches 
would seem like challenges that can be met within the 
next decade.

Biotechnological production of defined chitosan oli-
gomers might be more easily achieved, using microbial 
cell factories. Proof of principle for this approach was 
already shown decades ago with the recombinant expres-
sion of a bacterial chitin oligomer synthase yielding 
chitin pentamer in E. coli [63]. Co-expression with a bac-
terial chitin deacetylase yielded the mono-deacetylated 
chitosan pentamer with the GlcN unit exclusively located 
at the non-reducing end [64]. Varying or engineering 
the enzymes expressed might yield chitin and chitosan 
oligomers with different DP, FA, and PA. Eventually, this 
approach could give access to monoclonal chitosan oligo-
saccharides, and the process would be rather easily scal-
able [65].

Interactions of bioactive chitosans with receptors 
and targets to understand their modes of action
Two different hypotheses have been put forward to 
explain the modes of action of bioactive chitosans, the 
‘receptor hypothesis’ and the ‘target hypothesis’. Chi-
tosan oligomers are likely to be recognised by specific 
receptors, inducing specific cellular responses, whereas 
polymers may rather interact non-specifically with tar-
get structures, such as polyanionic cell surfaces, unless 
they are quickly degraded to oligomers [44, 58, 66]. The 
antimicrobial activities of chitosan polymers appear 
to rely on target interactions with e.g. teichoic acids of 
Gram-positive bacteria or phospholipid membranes of 
fungal cells [67, 68]. However, it is unclear why such an 
effect seems to be lacking in other eukaryotic cells. In 
both plant and human cells, chitin oligomer receptors or 
binding proteins have been described, such as CERK1/
LYK4/LYK5/CEBiP in Arabidopsis and rice plants or 
TLR2 in human cells, but a chitosan oligomer receptor is 
still unknown, though likely to exist [44, 45, 69–71]. The 
availability of structurally well-defined chitosan oligom-
ers and polymers with non-random PA will enable stud-
ies into the molecular and cellular modes of action of 
chitosans in these different biological systems. And this 
fundamental knowledge will eventually lead to more spe-
cifically targeted and more reliably effective biotechno-
logical applications of chitosans in many fields, including 
biomedical and pharmaceutical applications, human food 
and animal feed applications, biopesticide and biostimu-
lant agricultural applications, etc.

Biosynthesis, assembly, biodegradation, and structure–
function relationships of chitin/chitosan‑containing 
biomaterials
While chitin-containing biomaterials are wide-spread 
in nature, e.g. in insect cuticles and fungal cell walls, 
chitosan-containing biomaterials so far are known only 
from fungi [72–74]. Chitin-containing matrices cover 
the entire body of insects, fulfilling a broad diversity of 
roles, from flexible joints and hard cuticles to translu-
cent lenses. How these different matrices are synthe-
sised and assembled is far from being understood. And 
even less is known about the much rarer chitosan-con-
taining fungal cell walls in which chitosan typically is a 
very minor component only, with unknown functions. In 
some pathogenic fungi, conversion of chitin to chitosan 
has been hypothesised to serve as a sort of stealth strat-
egy to hide from the chitin-triggered immune system of 
the plant and animal hosts [18]. The only fungi thought 
to contain substantial amounts of chitosan in their cell 
walls are zygomycetes fungi, but structural details of 
this chitosan and how it is embedded in the complex 
cell wall matrix are still scarce [75]. Chitin polymers are 
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synthesised by transmembrane chitin synthases, and the 
nascent chitin chains emanating from the synthases may 
be partially deacetylated by chitin deacetylases acting in 
concert with the synthases [20]. Extensive deacetylation 
would yield chitosan polymers, but even chitin polymers 
are thought to be slightly deacetylated [39, 76]. Little is 
known about the cooperation and regulation of these 
processes, and even less is known on the assembly and, 
sometimes, biomineralization of the complex chitin-con-
taining matrices. Clearly, chitin-binding structural pro-
teins will be involved in this process, and it is tempting 
to speculate that local deacetylations may play a crucial 
role in the chitin-protein interaction, given that a deacet-
ylated GlcN unit or perhaps a small partially deacetylated 
domain with a specific sequence of GlcN and GlcNAc 
units within an otherwise fully acetylated chitin chain 
would represent an unmistakable marker for specific 
interactions. At this stage, this is fully hypothetical, but 

the tools and materials are rapidly becoming available to 
critically test such a hypothesis.

Conclusions
Chitins and chitosans and the matrices of which they 
are integral components are so much more than simple 
structural protections for delicate cells and organisms. 
They are functional biomaterials as well as bioactive bio-
logics. In both respects, their versatility is expressed by 
specific interactions with proteins which are responsible 
for their biosynthesis, modification, assembly, percep-
tion, and degradation. The PA of chitosans may act like a 
‘chito-code’, ‘written’ by trans-membrane chitin synthases 
in conjunction with regio-selective chitin deacetylases, 
‘read’ by sequence-dependent chitin binding proteins and 
chitosan hydrolases and, possibly, ‘understood’ by a pro-
teinaceous assembly machinery and pattern recognition 
receptors (Fig. 1). Today, this is just a hypothesis, but one 
that can and will be tested in the foreseeable future.

Fig. 1 The Chito‑Code: fiction today, fact tomorrow? While chitosan‑specific receptors for the perception of chitosan oligomers with defined 
patterns of acetylation (PA) acting as functional biologics triggering specific responses in target cells have not yet been described, and while 
the involvement of partially deacetylated domains with specific PAs within otherwise fully acetylated chitins in the protein‑assisted assembly of 
functional biomaterials is fully hypothetical, regio‑selective chitin deacetylases and sequence‑dependent chitosan hydrolases and chitin‑binding 
proteins are well known
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