Skip to main content
Fig. 2 | Fungal Biology and Biotechnology

Fig. 2

From: The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species

Fig. 2

Speculative models for contribution of (A) α-1,3-glucan and (B) galactosaminogalactan (GAG) to hyphal aggregation in submerged culture of Aspergillus species. (A) (1) The amount of α-1,3-glucan contributes to the degree of hyphal aggregation. Hyphae rich in α-1,3-glucan (a) aggregate tightly, whereas α-1,3-glucan–poor hyphae (b) aggregate loosely or disperse. (2) Spatial localization of α-1,3-glucan also contributes to hyphal aggregation. α-1,3-Glucan with low molecular mass localizes in the outer layer of the cell wall (c), whereas α-1,3-glucan with high molecular mass localizes in the inner layer (d). (B) GAG that is GalNAc-rich and/or has a high degree of deacetylation of GalNAc residues is associated with the cell wall (α) and has a role in hyphal aggregation. In contrast, GAG that is GalNAc-poor and/or has a low degree of deacetylation of GalNAc residues has low adhesivity to the cell surface (β). Galp, galactopyranose

Back to article page